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ABSTRACT
Monoclonal antibodies play an increasingly important role for the development of new drugs across
multiple therapy areas. The term ‘developability’ encompasses the feasibility of molecules to successfully
progress from discovery to development via evaluation of their physicochemical properties. These
properties include the tendency for self-interaction and aggregation, thermal stability, colloidal stability,
and optimization of their properties through sequence engineering. Selection of the best antibody
molecule based on biological function, efficacy, safety, and developability allows for a streamlined and
successful CMC phase. An efficient and practical high-throughput developability workflow (100 s-1,000 s
of molecules) implemented during early antibody generation and screening is crucial to select the best
lead candidates. This involves careful assessment of critical developability parameters, combined with
binding affinity and biological properties evaluation using small amounts of purified material (<1 mg), as
well as an efficient data management and database system. Herein, a panel of 152 various human or
humanized monoclonal antibodies was analyzed in biophysical property assays. Correlations between
assays for different sets of properties were established. We demonstrated in two case studies that
physicochemical properties and key assay endpoints correlate with key downstream process parameters.
The workflow allows the elimination of antibodies with suboptimal properties and a rank ordering of
molecules for further evaluation early in the candidate selection process. This enables any further
engineering for problematic sequence attributes without affecting program timelines.
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Introduction

Therapeutic monoclonal antibodies (mAbs) represent one of
the fastest-growing segments in the pharmaceutical market.
Antibody therapeutics enter clinical studies, and are being
approved, in record numbers; the commercial pipeline is
robust, with over 570 antibody therapeutics at various
phases of clinical trials, including 62 in late-stage clinical
studies and 13 antibody therapeutics approved in the
European Union or United States during 2018.1 Currently,
there are more than eighty (80) monoclonal antibodies
approved by the US Food and Drug Administration.
Antibodies are used in a broad range of disease areas, includ-
ing cancer, autoimmune diseases, inflammation, neurological,
cardiovascular, and infectious diseases. It is anticipated that
mAbs will remain an important part of human health
improvement for years to come.2

Approximately nine out of every 10 drug candidates fail to
win approval, i.e.,, 90% of drug candidates will fail during
clinical development; possibly over 99% if preclinical stages of
development are also included.3 This failure rate has huge

implications for the overall cost of drug development. The
underlying contributing reasons behind drug failure during
development remain poorly understood. In 2004, Kola and
Landis4 published analyses that have shed some light on the
subject, suggesting a collection of different causes behind drug
attrition, which include insufficient efficacy, suboptimal bioa-
vailability and pharmacology, safety and toxicology concerns,
or stability and quality issues with the drug product.

Although mAbs are typically selected for high affinity,
potency, specificity, Fc-modulated functionality, and optimal
pharmacokinetics, too often lead antibody molecules have
unsuitable biophysical properties. These suboptimal charac-
teristics can make it very difficult to streamline and accelerate
the manufacturing process because investments must be made
in non-platform downstream processes to move the molecule
forward into development. In addition, preferred routes of
administration might not be achievable if the molecules can-
not sustain high concentration because of increased aggrega-
tion or viscosity. These factors consequently lead to
substantial challenges in developing a drug product for
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subcutaneous injection.5,6 This is due in part to the fact that
the majority of drug candidates are initially screened and
selected based on affinity and functionality. Less attention is
paid to other biophysical properties, such as expression yield,
protein aggregation, chemical stability (e.g., susceptibility to
degradation through oxidation, deamidation), thermal stabi-
lity, ability to be formulated and stored at the desired con-
centration, and risk of immunogenicity, which should form
part of a comprehensive developability risk assessment.
Problems typically involve poor expression, poor colloidal,
or solubility properties, cross-reactivity to unwanted protein
species, or poor pharmacokinetic profiles. Therefore, the con-
cept of developability used to define the suitability of
a candidate to be developed as a successful drug, and the
ability to screen for optimal behavior at the early stages of
antibody candidate discovery are crucial. In the past decade,
numerous reports have examined the developability of biolo-
gics, in particular mAbs.7–10

To achieve maximum impact during the early stages of the
antibody molecule generation and selection process (often
referred to as the screening funnel), methodologies must
involve the use of in silico analysis (computational methods)
and leverage the use of high throughput (HT) assays and
tools. HT assays used for antibody molecule characterization
in discovery are often similar to assays used in the pre-
formulation and formulation process development space.
These assays are constantly assessed and optimized for their
suitability as predictive tools for key downstream parameters,
such as storage stability, viral inactivation, chromatographic
yield, ultrafiltration/diafiltration (UF/DF) performance, stabi-
lity in syringe, and potential in high-concentration prepara-
tions for subcutaneous injection.

A variety of in silico predictive tools have been developed
in recent years to predict aggregation risk in biologic mole-
cules. Such tools have utilized several approaches, including
semi-empirical methodologies to link the experimental obser-
vation of aggregation to protein physicochemical properties,
such as prediction of aggregation by the SAP score.11–16

Similarly, the identification of chemical modifications in com-
plementarity-determining regions (CDRs) of therapeutic anti-
bodies is a critical activity early in the discovery and
development process. Knowledge around protein motifs in
the antibody CDR, which increase the risk of occurrence of
specific post-translational modifications (PTMs), is being
acquired.17,18 While potential chemical liabilities can be iden-
tified based on the antibody primary sequence, these require
experimental confirmation to determine the degree of actual
modification. Machine learning methods (e.g., random forest)
to predict the hydrophobic chromatography (HIC) retention
time of a given antibody sequence were applied to develop
predictive models.19,20 Progress is being made toward estab-
lishing correlations between biophysical assays and computa-
tionally predictive behavior for downstream and
manufacturing endpoints using data gathered for a large
number of antibody molecules. In 2017, Jain et al. reported
the production and characterization using a dozen biophysical
property assays of a panel of 137 monoclonal antibodies
currently in advanced clinical stages.9 The authors formatted
the mAbs as human IgG1/kappa and were able to define

clusters of antibodies based on their biophysical properties,
which established that clinical success is associated with fewer
developability flags.

Collectively, across the biotechnology and pharmaceutical
industries, machine learning algorithms are in development
and could be useful for initial sequence assessment and prior-
itization. Very large numbers of sequences (10,000–100,000 s)
and associated analytical datasets are likely needed to arrive at
models that could reduce the amount of hands-on experimen-
tation. High-throughput empirical testing of molecules during
the discovery stage remains crucial to ensure only the best
molecules are progressed through the optimization and selec-
tion process.

Here, we describe an integrated, HT developability and
data management workflow, which was implemented at the
start of antibody lead discovery campaign in the early stages
of candidate screening and selection in the discovery space.
The workflow accelerates candidate selection, reduces risks in
the development, and ensures that only robust antibody mole-
cules are progressed to development activities. For this study,
we selected and evaluated a panel of 152 human or huma-
nized mAbs (as IgG1 or IgG4 isotypes and kappa or lambda
light chains) against different antigens representing multiple
human germline V-genes (human kappa light chain sub-
groups I, III, and IV, human lambda subgroup I, and
human heavy chain subgroups I and III).21 CDR sequence
attributes containing various potential chemical liabilities
(e.g., deamidation, isomerization, oxidation sites), charged or
hydrophobic surface patches, various lengths of CDR (VH
CDR3 ranging from 7 to 17 amino acids), and isoelectric
points (pI) ranging from 6.3 to 9.0 were represented in the
panel. The antibodies originated from immunization in
BALB/c or transgenic human mice (followed by humanization
and/or reformatting to selected human IgG1 or IgG4 back-
bone), human B cell derived from human donors, or synthetic
human libraries.22,23

For reference, Table 1 shows the correspondence of assays
used during HT developability assessment and well-established
analytical assays that are part of a formal manufacturability
assessment. There are several degradation pathways that could
alter the physicochemical properties and overall profile of an
antibody candidate. Early assessment of critical molecule and
sequence attributes, such as colloidal properties (aggregation,
self-interaction, hydrophobicity, viscosity), fragmentation/clip-
ping, PTMs, charge (pI), thermostability, and crucial biological
attributes (affinity, functional activity, specificity, stability in
plasma, half-life in humans), is critical for the selection of mole-
cules with enhanced drugability. This work requires the use of
HT assays since it can be performed using small amounts of
material (100 μgs) on a large number of candidate sequences
(100 s-1,000 s).

To help prioritize future drug candidates for development, we
sought to provide information about molecule properties and
correlations between assays. We present correlations between
various HT biophysical assays and with key downstream para-
meters. While the purpose and scope of this work was not to
generate and optimize quantitative structure–property relation-
ship (QSPR) and quantitative structure–activity relationship
(QSAR) model predictions, or machine learning techniques to
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create predictive models with correlation to experimental data as
was recently reported by Kizhedath et al.,57 we investigated
possible sequence-based in silico predictive approaches for HIC
as it is a priority 1 assay and surface properties were hypothe-
sized to contribute.

Case studies for a selected number of molecules that
showed pronounced suboptimal features in our developability
screening workflow are presented to highlight the predictive
nature of these assays for manufacturability endpoints, such as
long-term stability in formulation buffer and viscosity at high
protein concentrations. While the HT biophysical analyses
presented here show meaningful correlations between proper-
ties, a larger and more diverse dataset than what is presented
here will be needed to make solid correlation estimates
between these assays and downstream process parameters
and endpoints.58–64

Results

Antibody sequence selection workflow and drug
discovery process

MAbs are derived from multiple sources, such as immuniza-
tion of rodents followed by humanization, human transgenic
mouse platforms expressing human antibodies, or synthetic
human antibody libraries displayed on the surface of yeast,
mammalian cells, or phage. Antibodies can also be isolated
from immunized mouse B cells or human B cells isolated
from human patients (Figure 1). The different origins could
potentially lead to differences in germline sequence usage,
functional diversity (epitope, specificity), and biophysical
properties that need to be assessed and tracked during screen-
ing, optimization, and characterization. Antibody sequences
are typically analyzed in silico to evaluate sequence diversity,
functional cladding, and sequence liabilities (e.g., pI, PTMs,
charged, or hydrophobic patches in the CDR). When these
occur, PTMs may affect biological activity, lead to immuno-
genic responses, or affect stability and quality of the material,
representing initial product critical quality attributes (pCQAs)
revealed during the discovery phase and confirmed and char-
acterized during the subsequent development phases. These
attributes would result in substantially increased manufactur-
ing and analytical characterization support, causing delays in
progress toward clinical studies.

The integrated, streamlined screening, and developability
workflow employed in discovery, and described herein, can
typically be completed within a few weeks. At early stages of
evaluation, the aim is to screen many antibody sequences
(100–1,000 s) expressed transiently in Chinese hamster
ovary cells (CHO-Expi from Life Technologies), purified in
small amounts (100 s μgs – ~1 mg) via an automated protein
A chromatography platform (Tecan Freedom Evo 150), and
characterized by several assays. HT characterization involves
a defined set of functional tests, including binding by surface
plasmon resonance (SPR) methods and functional assays. The
biophysical and analytical characterization phase is initiated
as soon as binding and activity data of candidates meet the
minimum requirements defined in the target candidate

profile. The analytical characterization assays we selected are
deemed to be predictive of downstream endpoints.

In Figure 1, key stages of antibody drug discovery are shown
with the number of candidates tested during the screening and
selection process. To ensure that a wide spectrum of candidates
is evaluated, antibody sequence, functional epitope diversity, and
biophysical attributes are considered during ranking. Circular
arrows indicate that the analytical characterization is an iterative
process to be repeated during sequence engineering (e.g., muta-
genesis to remove a PTM or disruption a hydrophobic or
charged patch that could lead to low solubility and/or high
aggregation). Newly engineered molecules are reanalyzed with
the same analytical characterization scheme to ensure improved
biophysical properties and correction of the previously identified
suboptimal feature(s). This selection process is iterated until
a reduced number of sequences (typically <10) is selected in
discovery, leading to the initiation of stable cell line development
in the Bioprocess area. Each candidate receives a developability
risk label based on the following parameters: 1) affinity to the
target protein and potential toxicology species (e.g., non-human
primate (NHP) species) using SPR; 2) functional activity/
potency in various in vitro functional assays with engineered
cell lines or primary assays; 3) binding specificity (absence of
nonspecific binding and binding to homologous proteins that
present sequence or structural homologies with the target of
interest); 4) sequence and epitope diversity (in silico assessment
and experimental binning experiments); 5) assessment of colloi-
dal properties (aggregation, protein-protein self-interaction); 6)
hydrophobicity and solubility assessment; 7) thermostability and
conformational stability; 8) chemical stability via assessment of
sequence liabilities (modification of solvent-exposed residues) in
CDR regions (e.g., deamidation, isomerization, oxidation,
N-glycosylation sites); 9) susceptibility to proteolysis, fragmenta-
tion, and stability in platform formulation buffers (unstressed
and stressed conditions such as increased temperature, frozen
storage, freeze/thaw cycles, pH jump); 10) pI assessment (calcu-
lated and experimental); 11) titer in transient CHO expression
[low (<20 mg/L) vs ballpark levels >100 mg/L]; and 12) purifica-
tion experience (material loss during purification, filtration,
concentration, visual observation of turbidity, flocculence upon
buffer exchange or dialysis).

High-throughput developability assessment of a panel of
152 monoclonal antibodies

A selected panel of human or humanized IgG1/kappa, IgG1/
lambda, or IgG4 S228P/kappa antibodies obtained from various
origins was expressed transiently in small (8 ml) scale in a CHO-
Expi expression system. Antibodies were purified using a single
purification step (protein A chromatography), buffer exchanged
or dialyzed in sodium acetate pH 5.5 buffer and subjected to HT
physicochemical characterization assessment, typically carried out
using 50–100 ug of purified material. These assays are prioritized.
A higher priority (priority 1) is given to assays that identify
unacceptable properties. Priority 1 assays include ultra-high pres-
sure size-exclusion chromatography (UP-SEC) (aggregation), CE-
SDS (purity, clipping), differential scanning fluorimetry (DSF)/
nano-DSF (melting temperature and temperature of aggregation

MABS e1743053-5



onset (Tagg)), HIC (increased hydrophobicity and “stickiness” to
matrix or column), and intact mass (IM) by mass spectrometry
(sequence confirmation). Priority 2 assays include analysis by
reverse phase (HP-RP), affinity-capture self-interaction nanopar-
ticle spectroscopy (AC-SINS), low pH hold (exposure to low pH
~3.5 UP-SEC reading), and capillary isoelectric focusing (cIEF).
Affinity determination of the molecules is carried out throughout
the screening phase so that only molecules with the desired bind-
ing and functional activity are assessed for their biophysical
properties.

Critical molecule properties, analytical assays during
sequence selection and developability assessment

A number of biophysical assays, such as size-exclusion chro-
matography (UP-SEC), AC-SINS, HIC, thermostability (Tm/
Tagg) are relatively straightforward to implement, high-
throughput, and extraordinarily robust, allowing one to gain
insights into overall physicochemical properties, colloidal sta-
bility, and thermostability of mAbs. UP-SEC is the standard
method for protein aggregate analysis. Due to the difficulty in
producing large amounts of purified materials early in the
candidate selection process, it becomes challenging to truly
capture the long-term stability properties of a mAb, particu-
larly the solubility and viscosity behavior upon storage at high
concentrations. To this point, methods with the greatest impact
are in silico predictions11,12,58,60,61 and HT surrogate analytical
assays, as these approaches are predictive of aggregation and
tendency for self-interaction, which can be rapidly executed
requiring very small amounts of protein. AC-SINS is capable of
screening large panels of antibodies for their propensity to self-
associate.34–36 AC-SINS is based on concentrating mAbs from

dilute solutions around gold nanoparticles pre-coated with
polyclonal capture (e.g., anti-Fc) antibodies. Interactions
between immobilized mAbs lead to reduced inter-particle dis-
tances and increased plasmon wavelengths (wavelengths of
maximum absorbance), which can be readily measured by
optical means in a high-throughput, 384-well format. To be
viable as a potential candidate, proteins must remain stable
during long-term storage, shipping/shear agitation, in-use
handling, freeze-thaw, temperature excursion, and must meet
the minimal target product profile defined for the drug.
Typically, the solution stability of at least 2 years at 5 °C storage
is desired.55

Hydrophobicity is important because it may relate to self-
interaction, aggregation propensity, and protein stability,
making it useful to predict potential downstream risks. HIC
is able to separate protein species based on their hydrophobi-
city under non-denaturing conditions (unlike HP-RP, which
requires harsh denaturing conditions, such as solvents and
typically high temperature (~70°C-80°C)).62 In addition,
increased retention on HIC columns and high hydrophobicity
of certain CDRs have been linked to off-target binding and
poor pharmacokinetic (PK) properties.52

The thermostability of antibodies also plays a major role in
eliminating molecules with suboptimal conformation from
further evaluation or protein engineering. Methods such as
DSF, nano-DSF (unlike DSF, this method is not dependent on
the interaction between the protein and fluorescent dye), or
differential scanning calorimetry, which measures onset
(Tonset) and midpoint (Tm) temperatures of protein thermal
unfolding transitions, can provide a rapid means to rank candi-
dates. The putative connection between protein conformational
stability assessed by Tm, Tagg, and Tonset measurements are

Figure 1. Drug discovery, sequence selection, and developability workflow.
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thought to be potentially predictive or could be an indication of
long-term stability, which can also be experimentally
approached by measuring aggregation rates at high temperature
(40°C) to predict stability at 5°C and 25°C under long-term
conditions.33

Data management workflow for high-throughput
antibody selection and optimization

Antibody discovery at Merck is supported by various technol-
ogies (hybridoma, B-cell, yeast, and phage display) that lead to
sequence diversity and varying properties (affinity, potency,
biophysical properties) that need to be tracked throughout the
discovery and selection process. An integrated HT data man-
agement system is a key component, as it allows tracking of all
data along the discovery process and facilitates the identifica-
tion of the most promising antibody molecules. Figure 2
illustrates the integrated data management system we adopted
internally to capture and leverage large volumes of complex
data (e.g., molecular characteristics, high-throughput screen-
ing, preclinical attributes) to enable data-driven antibody
candidate optimization and selection.

A streamlined HT analytical characterization workflow gen-
erates a large amount of associated physicochemical character-
ization data that must be recorded, processed, managed, and
analyzed. To overcome this challenge, we generated a data man-
agement and visualization workflow that enables the quick auto-
mated upload of HT analytical data. This data management
system was developed in house as a combination of an internal
relational database system and off-the shelf solutions, such as
Perkin Elmer Bioassay (https://www.perkinelmer.com/product/
e-notebook-enotebook)65 for HT data capture and TIBCO
Spotfire for data visualization (https://www.tibco.com/).66 Data
is easily managed in a common interface that enables the use of
TIBCO Spotfire’s full functionality for managing acquired

datasets, identifying relationships, isolating outliers, and spotting
trends and patterns. Integration with TIBCO Spotfire helps
streamline the candidate selection workflows and drive better
decision making when screening through a large dataset asso-
ciated to many candidate molecules.

All types of assay information, including expression and
purification data, analytical assays (UP-SEC, HP-RP, Tm/Tagg,
CE-SDS, and Intact Mass), and functional read-outs (binding
and functional assay data) can be exported using this workflow.
In Spotfire, the data can be viewed together for ranking of
molecules, but it also enables a deep dive into the data for
a given sample of interest (Figure 2). These tables are then
used to rank candidate molecules against each other to enable
the selection of final sequences for further investigation.

High-throughput developability assessment of a panel of
152 monoclonal antibodies

The relevant analytical characterization data acquired for all
152 molecules was plotted using the JMP software suite
(https://www.jmp.com)67 and compiled in Figure 1 of the
supplemental data section. Antibodies were numbered as
mAb1-152 in the supplemental data section and throughout
the text and figures. The dataset is composed of 72 IgG1 and
80 IgG4 antibody molecules from different mAb generation
campaigns.

Distribution plots of the biophysical properties for key
analytical assays for the 152 antibodies are shown in
Figure 3a. The assays studied include titer measured by
Octet using protein A tips, aggregation by UP-SEC, purity
by HP-RP and CE-SDS, thermostability, and temperature of
aggregation formation onset measured by nano-DSF, hydro-
phobicity by HIC and UP-SEC, self-interaction by AC-SINS
and charge variant analysis by cIEF. Overall, molecules in
the tested panel exhibited a wide range of properties.

Figure 2. High-Throughput Analytical Characterization, Developability, and Data Management System.

MABS e1743053-7

https://www.perkinelmer.com/product/e-notebook-enotebook
https://www.perkinelmer.com/product/e-notebook-enotebook
https://www.tibco.com/
https://www.jmp.com


Transient expression levels in CHO-Expi ranged from 10 to
900 mg/L, monomeric antibody peak by UP-SEC from 50%
to 99.8%, purity by HP-RP from 35-100%, main antibody
peak by CE-SDS from 65-100%, Tonset from 45-66°C, Tm1
from 54-76°C, Tagg from 50-95°C, HIC retention time from
20 to 55 minutes, retention time by UP-SEC from 2.3 to
3.5 minutes, and maximum wavelength absorption (λmax)
from 520 to 575 nm by AC-SINS (in acetate pH 5.5 or in
phosphate-buffered saline (PBS) 1X pH 7.4 buffers). The
percentage of main antibody peak by UP-SEC upon low
pH hold also had a wide range from 75-100% main peak
and pI ranged from 6.3 to 9.5. Measured parameters and
properties, such as pI and Tm/Tagg, are known to be notice-
ably different between antibodies of the IgG1 and IgG4
backbones. The decreased conformational stability of the
human IgG4 subclass compared to IgG1 has been previously
described by others.68,69 These differences amongst the 152

antibodies we evaluated will be discussed in later sections
and figures.

To investigate the relationship between the data obtained
from the various analytical assays mentioned previously, assay
results were subjected to a multivariate analysis using the JMP
statistical analysis software package 13.0.0. Both Pearson and
Spearman correlation coefficients were calculated to further
understand the type and degree of relationship. The Pearson
correlation coefficient is a measure of the linear correlation
between two variables, while the Spearman correlation evaluates
the monotonic relationship between two continuous or ordinal
variables based on the ranked values for each variable rather than
the raw data. A correlation heatmapwas generated for each assay
endpoint (titer, % of main peak by UP-SEC after protein
A purification or after low pH stress, UP-SEC RT and HIC RT,
Tonset, Tm1, Tagg, pI measured by cIEF, self-interaction byAC-
SINS in acetate and PBS 1x, purity by HP-RP, and CE-SDS

Figure 3. a Distribution plots of physicochemical properties of 152 monoclonal antibodies from multiple biophysical assays. The box and whisker plot to the right of
each panel indicates the distribution of the properties which were evaluated. The box runs from the 1 st to the 3rd quartile, with the center line at the median.
Whiskers extend to the farthest points from the box not more than 1.5 interquartile ranges from the box. A 95% confidence diamond is given for the mean. The red
bracket outside the box marks the shortest regions that includes 50% of the observations. b Correlation clustered colored map of Spearman correlations (ρ). Negative
correlations between assays (−1 to 0) are shown in a blue rectangle. Positive correlations (−1 to 0) are shown in a red triangle. c Protein property descriptors and HIC
predicted retention times (HIC RT-PRED) vs. HIC RT for the 152 tested sequences. HIC RT expressed in minutes is the x-axis throughout. Antibodies that did not elute
were set to the maximum of 50 min. Pearson correlation r2 for HIC RT vs the indicated descriptor is reported on each scatter plot. i) The upper panel plots HIC RT-
PRED colored by patch_cdr_ion and its associated binned histogram. ii) The average sum of the ensemble surface area patches for the whole Fab (patch), and CDR
(patch_cdr) for each of hydrophobic (hyd) and ionic (ion) on the homology model are indicated and colored by the HIC RT-PRED as derived from the QSPR-4pt model
equation as is its associated histogram.
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reduced and non-reduced). These are clustered according to the
strength of the correlation and are shown in Figure 3b.
Correlation coefficients that approach “1” indicate the presence
of a strong positive relationship (red), those that approach “0”
suggest weak to lack of correlation, while those that approach
“-1” suggest a strong inverse or negative relationship (blue).

The positive correlations (Spearman ρ > 0 in red triangle in
Figure 3b) that were observed can be sub-divided into two
categories: 1) positive correlations associated with assays that
assess overall sample purity, such as UP-SEC (e.g., % main
peak after protein A purification or low pH stress), CE-SDS
non-reduced (% main peak) and HP-RP (% main peak),
where the % of main peak for each of these assays increase
in parallel as expected; and 2) positive correlations for assays
that point to different molecule attributes (e.g., retention time
on columns after protein A purification (UP-SEC or HIC) or
after low pH stress (UP-SEC), charge by cIEF (pI), thermo-
stability properties (Tonset, Tm1, Tagg) and that were not
necessarily expected to occur. Negative correlations
(Spearman ρ < 0, in blue box in Figure 3b) were observed
between % of main peak and % of high molecular weight
(HMW) and low molecular weight (LMW) species by UP-
SEC, % of main peak, pre- and post-main peak by HP-RP, %
of main species, LMW and HMW by CE-SDS under non-
reducing conditions, and % of main species, HC, LC, and
other species by CE-SDS under reducing conditions, and
λmax by AC-SINS in PBS pH 7.4 acetate pH 5.5 buffer.
These negative correlations point to assay read-outs that eval-
uate diverse molecule properties (clipped forms, aggregation,
hydrophobic species, and/or self-interactions) and were not
expected to trend in the same direction.

Table 2 shows some of the assay read-outs with the strongest
correlations (i.e., Spearman correlations > 0.50 and p < .001 for

each). Of note, several assay read-outs, such as pI and Tonset,
RT by UP-SEC after low pH stress and RT by HIC, Tagg and
Tm1, Tm1, and Tonset, % of main peak by UP-SEC after low
pH stress and Tonset, show ρ > 0.7. A strong correlation
(Spearman ρ between 0.54 and 0.76) between pI and higher
thermostability (Tonset, Tm1, Tagg) and resistance to the for-
mation of HMW upon low pH stress also emerged. The data
also show that antibodies with higher pIs tend to have higher
thermostability, with observed Spearman correlation coeffi-
cients of 0.50–0.75. Pearson’s correlation coefficients and asso-
ciated p-values are shown in Table 2.

With the goal of producing a model capable of predicting
HIC retention times, the calculated 3D homology models
were assessed across various calculated surface properties.
All antigen-binding fragment (Fab) sequences were modeled,
and hydrophobic and ionic surface areas were calculated. In
single-variable analysis with respect to HIC retention times,
we found the highest degree of correlation with the ensemble
average of the total ionic patch surface area proximal to
the CDR, which yielded a Pearson coefficient of r2 = 0.483
(Figure 3c).

To further explore the applicability of the surface properties,
a partial least squares (PLS) regression model was generated and
examined. The 4-point QSPR proved to be the most highly
correlated (r2 = 0.604 and leave-one-out cross validation
x2 = 0.579). The resulting 4pt-QSPR equation for HIC was:

HICRT-PRED = 42.23687 – 0.02859 * avg_patch_cdr_ion +
0.12656 * avg_patch_cdr_hyd – 0.02909 * avg_patch_hyd
- 0.00949 * avg_patch_ion

Breaking out ionic surface areas into its constituent posi-
tive and negative charge areas yielded a slight increase in

Figure 3. (Continued).
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Pearson correlation up to r2 = 0.614. Indeed, we were able
to generate PLS models with r2 values as high as 0.68, but
they all seemed to plateau at a similar cross-validation
x-square of 0.58. We opted against over-fitting in favor
of the simpler model.

Additionally, the equation remained predictive when
applied to the independent test set of 106 mAb sequences
described by Jain et al.9 (r2 = 0.58).

Applying the equation in a binary classification model using
a cut off of 30min, the equation was able to correctly classify good
elutes (≤30min) with 78% accuracy and poor eluters (>30 min) at
94% accuracy.

Since human IgG1 and IgG4 mAbs are known to have dif-
ferent properties (e.g., thermostability),68,69 we investigated dif-
ferences between these isotypes beyond what is reported in the
literature. Selected analytical characterization endpoints such as
UP-SEC (% main), UP-SEC after low pH (% HMW), Tonset
measured by nano-DSF, pI measured by cIEF and λmax shift
measured by AC-SINS (in acetate pH 5.5) were plotted using the
graph builder tool from the JMP software suite (Figure 4a-e). For
each assay, each data point in these plots was color-coded as
described in the figure legend. The analysis revealed that IgG4 s
harbor overall poorer physicochemical properties than IgG1 s,
including increased propensity to aggregate upon purification

Figure 3. (Continued).

Table 2. Spearman correlations (ρ > 0.5) for selected analytical characterization read-outs with p-values <0.0001. Pearson coefficients and associated
p-values are also shown. P-values test null hypothesis that the correlation coefficient = 0.

Variable by Variable Spearman ρ P-Value Pearson r P-Value

cIEF pI Nano-DSF Tonset (°C) 0.7642 <.0001 0.7498 <.0001
UP-SEC Low pH Retention time (min) HIC Retention time (min) 0.7479 <.0001 0.7489 <.0001
Nano-DSF Tagg (°C) Nano-DSF Tm1 (°C) 0.7299 <.0001 0.7952 <.0001
Nano-DSF Tm1 (°C) Nano-DSF Tonset (°C) 0.7243 <.0001 0.7901 <.0001
UP-SEC Low pH (% main) Nano-DSF Tonset (°C) 0.7203 <.0001 0.6632 <.0001
cIEF pI UP-SEC Low pH (% main) 0.6725 <.0001 0.6399 <.0001
Nano-DSF Tagg (°C) Nano-DSF Tonset (°C) 0.6698 <.0001 0.7362 <.000
UP-SEC Low pH Retention time (min) UP-SEC Low pH (% main) 0.6386 <.0001 0.4945 <.0001
UP-SEC Low pH (% main) UP-SEC Retention time (min) 0.5790 <.0001 0.3925 <.0001
cIEF pI Nano-DSF Tm1 (°C) 0.5669 <.0001 0.6723 <.0001
cIEF pI Nano-DSF Tagg (°C) 0.5489 <.0001 0.6603 <.0001
UP-SEC Low pH (% main) Nano-DSF Tm1 (°C) 0.5488 <.0001 0.6077 <.0001
UP-SEC Low pH Retention time (min) UP-SEC Retention time (min) 0.5317 <.0001 0.7948 <.0001
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via protein A chromatography and upon exposure to low pH,
lower Tonset and increased tendency for self-interaction, and
lower pIs (Figure 4 a-e).

In more detail, the majority of human IgG1 s exhibit <2%
HMW formation, while human IgG4 s exhibit a bell curve
distribution, with the bulk showing 2-10% HMW (Figure 4-a).
This trend, seen as HWM formation upon a single protein
A purification, is similar after low pH stress treatment (Figure
4-b). The data suggests higher thermostability and resistance
to aggregation for IgG1 s, with >90% of the mAbs having
a Tm onset of 60°C and up, while IgG4 s have lower Tm
onsets spanning 46–62°C (Figure 4-c). Further supporting the
trend, analysis by AC-SINS in acetate pH 5.5 shows that λmax
of IgG1 s is between 530 and 550 nm for 92% of the mAbs
and 540–575 nm for close to 100% of IgG4 s, suggesting
a higher tendency for self-interaction for IgG4 (Figure 4-e).

hile titer did not show a significant correlation with other
assays, it is interesting to note that, for only 6% of the
molecules, the highest titers trended with several assays,
such as Tonset/Tm/Tagg, RT on UP-SEC and HIC columns,
λmax by AC-SINS, and lower HMW formation upon low
pH stress. For a greater percentage of molecules (>20%),

higher titers in transient CHO expression systems
(>200 mg/L) only trended with thermostability endpoints
such higher Tonset (>60°C), Tm (>66°C), and Tagg (>70°
C). Titers have previously been reported to correlate with
overall thermostability of molecules.70,71 While expression
levels in transient transfection in CHO cells and in the
final selected stable CHO clone will likely vary, it is well
accepted that titers by transient transfection might provide
useful information regarding the overall molecule sequence-
specific and biophysical traits, such as overall colloidal prop-
erties, and susceptibility to undesirable PTMs (e.g.,
clipping).70,71 Analysis of a greater number of mAbs having
higher diversity in primary sequence and biophysical attri-
butes and closer assessment of the impact of different codon
optimization strategies will likely help to refine these
correlations.

To further investigate the hierarchical relationship between
the various assay read-outs, the data was plotted in
a dendrogram (Figure 4-f). The antibody panel segregated in
three clusters (Cluster 1, 2, and 3). Cluster 1 contained 55% of
the mAbs, while 28% are found in Cluster 2 and 65% in
Cluster 3. Cluster 3 (IgG1 s) shows better overall properties

Figure 4. Distribution plots of selected physicochemical properties for panel 152 monoclonal antibodies segregated in IgG1 s and IgG4 s. a-% of main peak by UP-
SEC after protein A purification b- % of main peak by UP-SEC after low pH stress, c- Tonset by nano DSF, λmax shift by AC-SINS in acetate pH 5.5, e- pI by cIEF. Color
of the dots in Figure 4 a-e indicates different molecules properties: green color indicates % of mean peak by UP-SEC >95%, Tonset >65°C, λmax by AC-SINS <540 nm,
(pI>7.5) f- dendrogram of properties for mAb panel segregated by isotype (IgG1 s and IgG4 s) g- Dendrogram highlighting three mAb clusters (Cluster 1, 2, and 3).
100% of IgG1s are found in cluster 3, while IgG4 s are found in clusters 1 and 2.

MABS e1743053-11



compared with Cluster 1 and Cluster 2 (IgG4 s). The proper-
ties include higher % of main peak by UP-SEC upon protein
A purification and low pH stress, higher Tonset, lower λmax
by AC-SINS in acetate pH 5.5, and higher pI, as mentioned
previously.

We then further examined correlations between assays
after segregating the data for the IgG1 s and the IgG4 s.
Significant correlations with Spearman coefficient greater
than 0.5 emerged and are shown in Table 3. Correlations
with Spearman coefficients >0.5 and low p-values (<0.001)
were discovered between 19 assay read-outs for IgG4 s, but
only 6 assay read-outs for IgG1 s. The most notable corre-
lations with Spearman coefficients >0.70 for the IgG4 s we
found were between AC-SINS in PBS pH 7.4 and Tagg, %
main peak by SEC after low pH and % main peak by SEC
after protein A purification, AC-SINS in PBS pH 7.4 and
Tonset, Tagg and Tm1, Tagg and Tonset, and pI and AC-
SINS in PBS pH 7.4. Correlations with Spearman ρ between
0.50 and 0.70 that were not anticipated emerged for IgG4 s.
These correlations included an association between pI by
cIEF and Tagg, % of main peak by UP-SEC after low pH
stress and Tm1, AC-SINS in PBS pH 7.4 and in acetate pH
5.5, AC-SINS in acetate and Tonset and other correlations
shown in Table 3. We noted that pI shows a strong corre-
lation (ρ > 0.5) with Tm1, Tagg, and AC-SINS (PBS pH
7.4) for IgG4 s but not for IgG1 s, which we hypothesize
could be due to IgG4 s having lower pIs than IgG1 s and
higher pIs being associated with overall better physico-
chemical properties.

For IgG1 s, fewer correlations with p values > .5 were
observed, as compared with IgG4 s, but a few strong correla-
tions emerged (ρ between 0.62 and 0.96). The data show strong
correlations (ρ > 0.8) between RT by UP-SEC after protein
A purification and low pH stress, Tm1, and Tonset, RT by
HIC and RT by SEC after protein A purification, and between

RT by HIC and RT by SEC after low pH treatment. All
Spearman and Pearson correlations associated with the entire
mAb panel irrespective of their isotypes are shown in supple-
mental Table 2. All Spearman and Pearson correlations for
IgG1 and IgG4 are presented in supplemental Tables 3 and 4,
respectively.

Figure 5 shows a comparative HT analysis of a subset of
human mAbs of the IgG1 and lambda light chain subclass
(mAbs 12–58). Having undergone affinity maturation, these anti-
bodies bind the same target, but exhibit different affinity, func-
tional activity, and are highly divergent in their CDR sequences.
The variants with improved affinities hadmutations at position 54
in VH-CDR2 and at position 103 and 104 in VH-CDR3. Figure 5a
lists selected affinity-matured variants that showed a 2-15-fold
increase in affinity relative to the original antibody (mAb32) and
the corresponding mutations. Figure 5a also shows the UP-SEC
profile of these molecules and the chromatograms overlaid with
the molecular weight markers (Waters BEH200 SEC protein
standard mix). These antibodies exhibit various retention times
and several migrate with a higher retention time, indicative of
nonspecific interactions with the UP-SEC resin, possibly a result
of exposed hydrophobic amino acid substitutions introduced
during affinity maturation. Molecules with an increased number
of hydrophilic substitutions on the CDR surface (mAb40 and
mAb24) exhibit a comparable RT by UP-SEC and HIC relative
to mAb32, while those containing more hydrophobic substitu-
tions show a shifted retention by UP-SEC and stronger binding
and retention to the UP-SEC and HIC columns (mAb15, mAb22,
mAb23, and mAb19) (Figure 5b and 5c). To date, details of the
relationship between “stickiness” of molecules to HIC and UP-
SEC columns has not been widely reported.

Based on this experimental data, these 4 variants were the
most hydrophobic molecules, consistent with the increase in
hydrophobic substitution on the surface of the molecule.
Measuring the hydrophobicity of a molecule by HIC

Table 3. Spearman correlations (ρ > 0.5) for selected analytical characterization read-outs with p-values <0.0001 separated by isotype (IgG1 and IgG4).
Pearson coefficients and associated p-values are also shown. P-values test null hypothesis that the correlation coefficient = 0.

Variable by Variable Spearman ρ P-Value Pearson r P-Value

IgG1
UP-SEC Low pH Retention time (min) UP-SEC Retention time (min) 0.9652 <.0001 0.9602 <.0001
Nano-DSF Tm1 (°C) Nano-DSF Tonset (°C) 0.9461 <.0001 0.9330 <.0001
UP-SEC Low pH Retention time (min) HIC Retention time (min) 0.8914 <.0001 0.7963 <.0001
HIC Retention time (min) UP-SEC Retention time (min) 0.8307 <.0001 0.6915 <.0001
Nano-DSF Tagg (°C) Nano-DSF Tm1 (°C) 0.7054 <.0001 0.7028 <.0001
Nano-DSF Tagg (°C) Nano-DSF Tonset (°C) 0.6248 <.0001 0.6377 <.0001
IgG4
AC-SINS PBS pH 7.4 Nano-DSF Tagg (°C) 0.7820 <.0001 0.8076 <.0001
UP-SEC Low pH (% main) UP-SEC (% main) 0.7651 <.0001 0.7588 <.0001
AC-SINS PBS pH 7.4 Nano-DSF Tonset (°C) 0.7567 <.0001 0.6716 <.0001
Nano-DSF Tagg (°C) Nano-DSF Tm1 (°C) 0.7221 <.0001 0.8714 <.0001
Nano-DSF Tagg (°C) Nano-DSF Tonset (°C) 0.7130 <.0001 0.7940 <.0001
cIEF pI AC-SINS PBS pH 7.4 0.7073 <.0001 0.7486 <.0001
cIEF pI Nano-DSF Tagg (°C) 0.6391 <.0001 0.7767 <.0001
UP-SEC Low pH (% main) Nano-DSF Tm1 (°C) 0.6176 <.0001 0.5171 <.0001
AC-SINS PBS pH 7.4 AC-SINS NaAc pH 5.5 0.6130 <.0001 0.4763 <.0001
AC-SINS NaAc pH 5.5 Nano-DSF Tonset (°C) 0.6093 <.0001 0.5741 <.0001
cIEF pI Nano-DSF Tm1 (°C) 0.5623 <.0001 0.6879 <.0001
AC-SINS PBS pH 7.4 Nano-DSF Tm1 (°C) 0.5553 <.0001 0.5881 <.0001
Nano-DSF Tm1 (°C) Nano-DSF Tonset (°C) 0.5347 <.0001 0.7233 <.0001
Nano-DSF Tm1 (°C) UP-SEC (% main) 0.5303 <.0001 0.3116 0.0049
UP-SEC Low pH (% main) AC-SINS PBS pH 7.4 0.5261 <.0001 0.4410 <.0001
UP-SEC Low pH (% main) Nano-DSF Tagg (°C) 0.5160 <.0001 0.4928 <.0001
HIC Retention time (min) Nano-DSF Tonset (°C) 0.5127 <.0001 0.4644 <.0001
AC-SINS PBS pH 7.4 HIC Retention time (min) 0.5071 <.0001 0.6629 <.0001
UP-SEC Low pH Retention time (min) HIC Retention time (min) 0.5066 <.0001 0.5711 <.0001
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chromatography has been reported to be potentially predictive
of depressed colloidal properties, inability to achieve high con-
centrations, and a possible indication of increased risk of non-
specific and off-target binding, which could lead to poor PK and
unexpected toxicity.29,30

To further explain the effects of these mutations on the anti-
body surface, we examined the homology models for the wild-
type (WT) (mAb32) and the double mutants (mAb15, mAb22,
mAb23, mAb19, mAb40, and mAb24). Since mAb15, mAb22,
mAb23, and mAb19 introduce an additional hydrophobic patch
(yellow) in close spatial proximity to an existing hydrophobic
patch (brown) present in the WT, we hypothesized that the
increase in patch size was the likely cause of the increased UP-
SEC andHIC retention times for these molecules (Figure 5d). To
support this hypothesis, we initially examined simple homology

models (data not shown). However, no clear relationship
between hydrophobic patch size and retention time could be
observed. In fact, the highest correlation with this subset of
mAbs was with the total size of the negatively charged patch
surface area proximal to the CDR (patch_cdr_neg) (r2 = 0.903).
This correlation proved to be spurious when ensembles for this
subset were examined (r2 = 0.010). This precipitous drop under-
scores the need to avoid using single static models to calculate
properties for dynamic systems.

For the selected subset of mAbs, the use of ensemble
averages yielded a maximum correlation with the ionic
patch surface area (patch_ion) (r2 = 0.213) (Table 4). This
ensemble-based correlation increased significantly when both
hydrophobic and ionic surface patch size was considered
through the use of the derived 4pt-QSPR equation

Table 4. Experimental and predicted HIC retention times for selected mAbs. Included are the 4 contributing properties which compose the 4-Pt QSPR equation
resulting in the predicted retention times. r2 values for each column vs. HIC RT are displayed in the final row.

mAb HIC RT (min) HIC RT-PRED (min)

Ensemble Average Sum of Patch Surface Area (Å2)

patch_cdr_hyd patch_hyd patch_cdr_ion patch_ion

mAb15 50 47.8 224 394 172 1176
mAb19 50 44.4 260 394 162 1090
mAb22 50 51.9 258 416 104 1198
mAb23 50 51.7 214 412 176 1164
mAb24 25.1 40.5 212 352 190 1188
mAb32 29.1 37.7 226 428 180 1194
mAb40 25 35.1 232 404 148 1188

r2 0.793 0.188 0.075 0.115 0.213

Figure 5. UP-SEC, HIC, and molecular surface analysis of a family of affinity matured antibodies. a- UP-SEC, b- HIC, c- Plot of retention times (RT) by UP-SEC vs. HIC,d-
Surface patch analysis using homology models of affinity matured mutants (mAb32,15,22,23,19,40, and 24) e- Overall biophysical properties (UP-SEC, HP-RP, CE-SDS,
Tm/Tagg, HIC, SINS, low pH hold UP-SEC, cIEF) for mAb 40.
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(r2 = 0.793). The high degree of predictivity suggests that
retention times are due to multiple factors, including surface
hydrophobicity and ionic properties. Complete values for all
mAbs are available in supplemental Table 5. Among the
affinity-matured versions, mAb40 is the preferred variant
from an affinity and potency standpoint (data not shown),
as well as having the lowest predicted HIC retention time. It
has a 15-fold affinity increase relative to WT, an optimal pI of
8.24, and exhibits the best profile in all analytical assays that
inform on colloidal properties, such as aggregation level after
protein A purification and low pH hold, Tm and Tagg by
nano-DSF, wavelength of maximum absorbance by AC-SINS,
and retention time to UP-SEC and HIC columns (Figure 5e).

Case study 1: mAb A (humanized IgG4/kappa) and its
engineered variants

MAb A is a hinge-stabilized (S228P) IgG4 and kappa subtype.
The parental antibody, derived from BALB/c mouse immuni-
zation, exhibited high sequence homology to human heavy
chain germline V-gene subgroup III and human kappa light
chain germline V-genes subgroups III and IV, which served as
the framework sequences for humanization. Two humanized
variable heavy (VH) chain variants (VH1 and VH2) and four
humanized variable light (VL) chain variants (VL1 and VL2
based on human kappa subgroup IV; VL3 and VL4 based on
human kappa subgroup III) were paired in all combinations.
Multiple mouse/human chimeric (mAb75-77) and humanized
variants (mAb78-111) were also designed to address a solvent-
exposed methionine in VH-CDR2 at position 64 predicted to
oxidize (mAb75-111). A total of 36 antibodies was evaluated
side by side, including the mouse parental and methionine
corrected variants, in biophysical assays and binding by SPR
to both human and non-human (NHP) target. Molecules
substituted with leucine (M64 L) and valine (M64 V) to
correct the predicted Met oxidation did not affect SPR bind-
ing attributes and had no measurable or significant impact to
biophysical characteristics. All humanized variants had low-
calculated pIs (range 6.4–6.7) and exhibited a consistent, yet
acceptable, loss in binding to target antigen (2–3 fold) relative
to the mouse/human chimera. Affinity of all humanized var-
iants to target antigen was similar (data not shown).

Biophysical attributes correlated with specific VL germline
gene usage, whereas usage of humanized VH design had little or
no impact on the properties. Higher Tm/Tagg and antibody
purity by UP-SEC correlated to the VL chains (Figure 6a).
Since little fragmentation was observed, losses in UP-SEC purity
were presumed to be due to HMW aggregation. Sequence ana-
lysis revealed that humanized variants clustered by VL, and the
order of preference based on biophysical properties is chimera
(mouse VL) ~ VL2 > VL1 > VL4 > VL3, where the original
chimera and VL2 variants had the highest Tm and purity by UP-
SEC. Moreover, M64 V and M64 L substitutions introduced in
VH1 and VH2 had no effect on % of monomeric peak by UP-
SEC or Tm. Additionally, as the number of mouse parental back
mutations increased, a concomitant drop of 2-3°C in Tm can be
observed. Figure 6b shows the impact on Tm for the various
humanized VL variants subgroup (VL1-VL4). The group of VL2
variants, which differs by 1 amino acid in the framework regions

to the human kappa subgroup IV germline sequence, had the
best Tm values andUP-SEC purities relative to other VL variants
having a greater number of mouse residues. Taking into con-
sideration Tm, purity by UP-SEC, and sequence identity to the
nearest germline, humanizedmAbA variants were ranked in the
following order VH1 > VH2 and VL2 > VL1> VL4 > VL3.

Additional testing of the VH1/VL2, VH1 M56 V/VL2, and
VH1 M56 L/VL2 variants confirmed desired activity and func-
tional characteristics (data not shown). The twoMet56 engineered
candidates were selected for further developability analysis,
requiring a large amount of material and the standard platform
purification approach used in downstream development.

Antibody purified by Protein A affinity is held for 1 hour
at pH 3.5, then pH adjusted to pH 7 prior to an anion
exchange chromatography (AEX) clean-up step. White pre-
cipitate formed for all molecules during the pH adjustment
step leading to >20% protein loss and a 2% increase in soluble
aggregation after low pH hold to pH 7.0 adjustment (data not
shown). The variants were indistinguishable in terms of bio-
physical and physicochemical properties (monomer purity by
UP-SEC after purification steps, after 5 freeze/thaw cycles and
purity by HPLC-RP, CE-SDS, pI, charge variants distribution
by cIEF) (data not shown). When subjected to forced degra-
dation studies, additional modifications were identified at
N34 in VL CDR1 and W101 in VH CDR3. Both molecules
deamidated at N34 up to an average of 12.5% at pH 10 (25°C)
and 16.0% at pH 5.5 (50°C). Since these two variants differed
by one amino acid in the VH CDR2 and had similar deami-
dation levels, it was believed that the sequence difference had
no impact on VL CDR1 N34 deamidation, and, therefore, the
measured values were averaged (Figure 6c). Oxidation at
W101 was detected at 11.2% and 14.2% under 1X light and
1 M 2,2ʹ-azobis(2-amidinopropane) dihydrochloride (AAPH)
stress, respectively, and is reported in Figure 6d.

The precipitation observed during the pH adjustment step
presented a developability risk. Along with the low pI attri-
bute (pI~6.3–6.4), it was hypothesized that the low pI of the
two variants may be contributing to this phenomenon.
Moreover, the low pI presented a potential risk to down-
stream operations and could affect host cell protein (HCP)
and viral protein clearance if interactions to the IEX resins
were incurred. To obtain molecules with optimal properties,
we created new variants and screened for higher pI (pI
~7.2–7.5). Human kappa light chain germline subgroup
I was selected as the new framework for humanization to
achieve higher pI without mutating other variable domain
residues. These light chains were paired with the
VH1 M64 V variant on both human IgG4 and mutated
IgG1 backbones for reduced effector function. Four new
humanized VL variants (VL5-8) were created on both iso-
types. These higher pI variants (mAb107-110 (IgG4) and
mAb103-106 (mutated IgG1)) were compared with the
lower pI variant VH2 M64 V/VL2 (mAb87 (IgG4) and mAb
102 (mutated IgG1)) by selected biophysical screening assays
described in supplemental Table 1 (UP-SEC, Tonset, Tm,
Tagg, CE-SDS, HP-RP, AC-SINS, and cIEF). Molecules with
the VL6 and VL8 light chains, despite raising the pI to ~8.84
for the mutated IgG1 and to ~7.45 for the IgG4 molecules, did
not show improved properties compared to lower pI variants
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(mAb87 and mAb102) (Figure 7a). The remainder of the
analysis focused on molecules with the preferred IgG4 isotype.

The selected characteristics demonstrated again that the huma-
nized framework used in the variable light chain affected several
attributes, such as aggregation, purity by UP-SEC, and Tm/
Tonset/Tagg. The resulting preferred light chain from
a physicochemical standpoint was VL5 > VL7 = VL8 > VL6.
VH1 M64 V/VL5 variant (mAb107) showed an improvement
compared to the original lead molecule VH1 M64 V/VL2
(mAb87) in several properties, e.g., higher Tonset (57.9°C
vs 55.8°C), higher Tm (65.7°C vs 63.7°C), higher Tagg (64.1°C vs
62.7°C), higher percentage of monomer by UP-SEC (98.2% vs
95.5%), increased purity by HP-RP (97.4% vs 92.8%) and by CE-
SDS (100% vs 94.1% of variants retained target antigen binding
with the pI ranging from7.45 to 8.85, asmeasured by cIEF), as well
as an improved pI as measured by cIEF (7.21 vs 6.33). A better
profile was not observed for the higher pI VH1 M64 V/
VL5 molecules compared to lower pI molecules in the AC-SINS
assay in both sodium acetate pH 5.5 and PBS pH 7.4 formulations.
Binding to human andNHP targets as well as functional activity in
bioassays was similar for theVH1/VL5-8 antibodies. Similar to the
finding for VL1-4, a strong correlation between UP-SEC purity
and Tm was also observed for this set of improved humanized
variants (Figure 7b), further confirming that VL5 was the superior
variant. The IgG4 isotype was selected for the preferred variant
VL5 (pI 7.2).

To gain additional insights into the predictive nature of
the biophysical attributes of molecules detected during the
screening phase, selected manufacturability endpoints,
such as purification recovery, diffusion interaction para-
meter (kD) (measures intermolecular weak interactions),
viscosity at high concentrations (at 100 mg/ml), solubility
to PEG 6000, sub-visible particle formation after 10 days
at 50°C, and stability upon 4-week storage at 40°C, were
studied. Large-scale production of the pI variants
VH1 M64 V/VL5 (mAb107) and VH1 M64 V/VL5 N34Q
(mAb111) variants and the lower pI VH1 M64 V/VL2
(mAb87) variant was needed to obtain larger amounts of
purified protein.

Antibodies were purified with Protein A followed by
1-hour low pH hold and an AEX step as previously
described. Negatively charged species, such as DNA, HCP,
and virus, are expected to bind to the resin and the mAb is
expected to be in the flow-through. Purified antibodies were
dialyzed in 20 mM sodium acetate pH 5.5 buffer for sub-
sequent analysis. Improved thermostability was indeed con-
firmed in both large-scale and HT small-scale preparations
for the higher pI variant (mAb111). The molecule exhibited
higher Tonset (57.2°C vs 55.2°C), higher Tm Fab (65.9°C vs
63.8°C), and higher Tagg (67.5°C vs 62.7°C), which corre-
lates with a higher percentage of monomeric antibody by
UP-SEC analysis.

Figure 6. Case Study mAb A and humanized variants.
a- % aggregation by UP-SEC vs. Tm by DSF for mAb A humanized variants ordered by VL chain. Each cluster represents the combinatorial pairing of the specified VL
chain with multiple VH designs (VH1, VH2, VH1 M64 V, VH2 M64 V, VH1 M64 L, and VH2 M64 L). The antibodies are VH chimera/VL (mAb75), VH chimera M64 V/VL
(mAb76), VH chimera M64 L/VL (mAb77) variants, VH1/VL1 (mAb78), VH1 M64 V/VL1 (mAb86), VH1 M64 L/VL1(mAb94), VH2/VL1 (mAb82), VH2 M64 V/VL1 (mAb90),
VH2 M64 L/VL1(mAb 98), VH1/VL2 (mAb79), VH1 M64 V/VL2 (mAb87), VH1 M64 L/VL2 (mAb83), VH2 M64 V/VL2 (mAb91), VH2 M64 L/VL2 (mAb99), VH1/VL3
(mAb80), VH1 M64 V/VL3 (mAb88), VH1 M64 L/VL3 (mAb96), VH2/VL3 (mAb84), VH2 M64 V/VL3 (mAb92), and VH2 M64 L/VL3 (mAb100).b- Effects of mouse
backmutation on the Tm of mAb A humanized variants ordered by VL chain. c- Comparison of Asn (N) deamidation across all mAb A humanized variants (mAbs
78–111) within the Fc region (PENNYK peptide) and at VL-CDR1 N34 after 1-week incubation at 4°C, 7 days incubation at 50°C in 20 mM sodium acetate pH 5.5, and
after 7 days incubation at pH 10 at 25°C. The reported percentage of Asn deamidation was assessed using peptide mapping by MS as described in Materials and
Methods d- Level of Trp oxidation at W101 in VH-CDR3 for mAb A humanized variants (mAb78-111) under various stress conditions (1 M 2,2ʹ-azobis(2-amidino-
propane) dihydrochloride for 6 hours, exposure to 1x light stress, and 50°C incubation for 7 days in 20 mM sodium acetate pH 5.5)
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A 10% improvement in recovery of the higher pI variants
is attributed to reduced binding to the AEX flow through
polishing resin (Supplementary Figure 2). An HT slurry
plate method evaluated the platform fit of the Poros HQ
AEX step with respect to yields and aggregates clearance of
the three candidates. While the higher pI variants also showed
some binding to the AEX resin, they provided a reasonable
platform fit (i.e., >70% protein recovery post AEX step), with

no need for significant process modification. Of note,
improvement was observed in nearly every downstream pro-
cess development attribute (Figure 7c). Other improvements
included higher PEG 6000 solubility (11.4–11.5% vs 9.7%),
suggesting a decreased propensity of the folded protein to
precipitate, and a less negative kD (−9.2 and −9.4 vs
−14.1 ml/g), suggesting a reduction in weak attractive inter-
actions for the higher pI variants.

Figure 7. Case study Humanized mAb A incorporating variants with higher isoelectric point.
a- Comparison of developability attributes for higher pI mAb A variants VH1 M64 V/VL5-VL8 (mAb103-111) and lower pI variant VH1 M64 V/VL2 (mAb87). Properties
are color-coded as follows. Properties are separated in to 3 groups – optimal (light green), intermediate (gray), and suboptimal (dark pink). Optimal properties
include UP-SEC >95%, Tm onset >55°C, Tm Fab >65°C, Tagg >64°C, 7.5 > pI <9, HP-RP purity >95%, purity by CE-SDS non-reduced >98%. Intermediate properties
include 90% < UP-SEC <95%, 50°C < Tm onset <55°C, 60°C < Tm Fab <65°C, 60°C < Tagg <64°C, pI ~7.0–7.5 and ~9.0–9.5, 90% < HP-RP purity <95%, 95% > purity
by CE-SDS non-reduced<98%. Suboptimal properties have UP-SEC <90%, Tm onset <50°C, Tm Fab <60°C, Tagg <60°C, 6 < pI >9.5, HP-RP purity <90%, purity by CE-
SDS non-reduced <90% b- Aggregation by UP-SEC vs. Tm determined by nano-DSF for VH1 M64 V/VL1-VL8 variants (mAb103-111). c- Comparison of higher pI VH1
M64 V/VL5 (mAb107) and VH1 M64 V/VL5 N34Q (mAb111) vs lower pI VH1 M64 V/VL2 (mAb87) IgG4 variants across several manufacturability attributesd-
Aggregation measured by UP-SEC for VH1/VL5 N34Q IgG4 (mAb111) (higher pI) and VH1 M64 V/VL2 (mAb87) (lower pI) IgG4 in accelerated stability test in 20 mM
Acetate pH 5.5 at 40°C for up to 4 weeks E- Determination of sub-visible particles (≥0.88 μm and ≥0.45 μm) for VH1/VL5 N34Q IgG4 (mAb111) (higher pI) and VH1
M64 V/VL2 (mAb87) (lower pI) IgG4 variants at 10 mM acetate buffer at pH 5.6 (black solid bar) and 10 mM citrate buffer at pH 6.8 with 50 mM NaCl (white bar).
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We conducted short-term accelerated stability studies at
20 mg/ml at 40°C for up to 4 weeks comparing VH1 M64 V/
VL5 N34Q (mAb111) and VH1 M64 V/VL2 (mAb87) (Figure
7d). In the VL5 variant (mAb111), UP-SEC aggregation in 20mM
sodium acetate pH 5.5 buffer only increased by roughly 0.6% after
one month 40°C storage, whereas the VL2 variant (mAb87)
increased by 1.5%. Guava EasyCyte 5HT™ flow cytometer (GFC)
was used to gain insight into the formation of subvisible particles
in the lower pI (VH1 M64 V/VL2) and higher pI variants (VH1
M64 V/VL5 and VH1 M64 V/VL5 N34Q) of mAb A. One of the
distinct advantages of using GFC during the formulation devel-
opment stage is its ability to perform particle counting (from
≥0.22 microns to ≥10 microns) on an HT platform with less
than 100 μL sample volumes.72 Figure 7e illustrates particle count-
ing results, in ≥0.45 μm and ≥0.88 μm ranges, of the lower pI
(VH1M64 V/VL2) and higher pI variants (VH1M64 V/VL5 and
VH1M64 V/VL5 N34Q) in a formulation matrix (10 mM acetate
buffer at pH 5.5 and 10 mM citrate, 50 mMNaCl at pH 6.8) after
the formulations were subjected to a thermal stress (10 days at 50°
C). Compared to the VH1 M64 V/VL2 variant, the VH1 M64 V/
VL5 variants showed considerably less particle counts in both
≥0.45 μm and ≥0.88 μm particle ranges in two different formula-
tions, suggesting VL5 variants (high pI) have less aggregation
propensity than that of VL2 variant (low pI) under tested for-
mulation conditions.

Viscosity was found to be similar for both variants in
sodium acetate pH 5.5 (~4.3 vs 4.5 cP for VL2 and VL5
variants, respectively, at 100 mg/ml) (Figure 7c) and corre-
lated well with the AC-SINS values in both sodium acetate
and PBS pH 7.4 obtained during the screening phase (Figure
7a). This supports the finding that the HT biophysical dataset
presented in Figure 7a and b was predictive of several man-
ufacturability endpoints shown in Figure 7c, d, b, and cor-
rectly directed the engineering of an optimized antibody
molecule with higher pI, improved stability, and better fit to
downstream process development platforms. These improved
properties will avert multiple risks affecting both process and
formulation criteria (Figure 7c, d, e).

Case study 2: Humanized mAb B (IgG1/kappa)

Humanized mAb B, an IgG1 and kappa subtype, was selected
as a candidate for a drug program for its functional activity,
affinity, specificity, and physicochemical and biophysical
properties. The parental antibody, derived from BALB/c
mouse immunization, exhibited high sequence homology to
human heavy chain germline subgroup I and human kappa
germline subgroup I, which were selected as the frameworks
for humanization. The antibody demonstrated favorable phy-
sicochemical properties, such as a pI of 8.85, a Tonset of
73.88°C, high percentage of monomer by UPLC-SEC upon
purification, and stability after 5 freeze thaw cycles at −80°C,
except for the 15% oxidation under 1x light exposure at W104
in VH-CDR3. This oxidation was associated with a > 6%
increase in HMW formation and reduction in binding affinity
to the target by SPR (data not shown). Substitutions were
made to eliminate this sequence liability and potential
pCQA. MAb B (mAb74) with 10 mutations at the W104 site

(W104Y (mAb73), W104 V (mAb70), W104 S (mAb64),
W104A (mAb69), W104 T (mAb65), W104 L (mAb71),
W104 G (mAb68), W104 N (mAb66), W104Q (mAb67),
and W104 F (mAb72)) were analyzed in our HT screening
workflow (Table 1 in supplemental section). For the remain-
der of this case study, mAb B WT (mAb74) molecule will be
referred to as W104 and mAb B W104 mutants as W104X (X
containing the mutation introduced at the W104 site).

Generally, the biophysical attributes of the molecules were
similar across the WT and all W104X variants (purity measured
by UP-SEC- and RP-UPLC >98%; Tonset ~61.8°C–63.9°C, Tm
~68.5°C-69.5°C, cIEF, and CE-SDS profiles) with the key excep-
tion of AC-SINS. W104 N, W104, W104Y, W104Q had the
lowest λmax by AC-SINS in both PBS pH 7.4 and sodium acetate
pH 5.5 showed the best colloidal properties in this assay.W104A,
W104 F, W104 V, W104 G showed an increased λmax in both
buffers, indicative of possible suboptimal colloidal properties.
W104 and W104X variants exhibited slightly different RT on
HIC column (Table 1 in supplemental section). These differen-
tiated properties seen by AC-SINS were tabulated together with
data obtained from additional assays (measurement of Rh by
dynamic light scattering (DLS) at 2 mg/ml and binding to the
human target by SPR) (Figure 8a). The same W104X variants
(W104A, W104 F, W104 V, W104 G) showed both an increase
and unusually large hydrodynamic radii (~9-15 nm) in both PBS
and sodium acetate buffer outside the normal distribution for
antibodies (typically ~5-6 nm).W104 F was the onlymutant that
maintained a similar affinity to its target (KD ~4.5E-10 M) as
W104 (KD ~3E-10 M).

To assess the prediction value of the results seen during the
screening phase, W104 and W104X variants were scaled up to
allow manufacturability evaluation, such as viscosity measure-
ments, kD assessment by DLS, and solubility to PEG 6000. In
agreement to AC-SINS and Rh measurements performed
during screening, significant differences in maximum absorp-
tion wavelengths (λmax) were observed also by AC-SINS
using purified materials from larger scale cell cultures, con-
firming a potential self-association issue for W104 F in PBS
pH 7.4. W104 and W104 F had λmax of 548 nm and 564 nm,
respectively, which is a significant difference of 16 nm. PBS
buffer alone had a λmax of 535 nm. Typically, a difference in
λmax (Δλmax) between buffer and the test article ≥15 nm
implies high self-interaction. Maximum absorbance shifts
were lower in lower pH formulation, such as sodium acetate
pH 5.5 for the W104 F variant, but showed a similar trend as
in PBS pH 7.4. Hydrodynamic radius (Rh), which depends on
the size, shape, homogeneity of molecules in solution, and KD

measured by DLS were found to be dramatically higher for
mutant W104 F versus W104 in both buffers evaluated (PBS
pH 7.4 and sodium acetate pH 5.5). Rh at 2 mg/ml was 5.6
and 6.1 nm for W104, which is a typical range for mAbs, and
showed an increase to 8.5 nm and 10.2 nm for the W104 F
mutant in acetate and PBS formulations, respectively. This
indicates that, even at low concentrations, the hydrodynamic
radius of W104 F increased to a large value outside the
normal distribution for antibodies. This was also confirmed
by highly negative kD values measured by DLS for the W104 F
mutant (−44 ml/g in PBS pH 7.4 and −23 mg/g in sodium
acetate pH 5.5) (Figure 8a).
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Analysis of W104 and selected W104X variants by HIC
showed that the molecules exhibited slightly different reten-
tion times on the column (24.2–29.5 min). W104 showed the
most pronounced hydrophobicity, slightly elevated over the
hydrophobicity of W104Y and W104 F variants
(Supplemental Table 1). Affinity by BIAcore showed that
only W104 F maintained an affinity similar to that of W104,
while the remainder of the substitutions (G, T, S, A, L, V, N,
Q) that showed some modest improved hydrophobicity pro-
file on the HIC column compared to W104 showed
a significant decrease in affinity. Examination of the putative
antigen-binding site shows that 15 aromatic residues are pre-
sent in the CDR loops, accounting for roughly 25% of the
total composition of the loops, higher than the average
prevalence.73 A homology model of W104 (Figure 8b) shows
that 10 residues composed of 7 tyrosine, 1 phenylalanine
(Phe), 1 histidine, and 1 tryptophan in the CDR are solvent
exposed (Figure 9c). The ability of tyrosine to participate in
both electrostatic and van der Waals’ interactions, along with
the stabilizing role of other aromatic residues in protein–
protein interfaces, is well known.74,75 We hypothesize that
the high representation of aromatic residues in W104 and
the Phe-Phe stacking geometries observed in other proteins
may make W104 F more amenable to self-interaction relative
to the bulkier indole ring of tryptophan.

Additional developability studies were conducted on W104
and W104X variants, including W104 F, to shed light on factors
contributing to the propensity of the W104 F mutant to self-
interact. In Figuress 9a and 9b, self-association attributes are
tabulated for both W104 andW104X variants. As shown, Rh and
kD measured by DLS are dramatically higher for W104 F relative
to WT in both buffers evaluated. Along with high self-interaction
and viscosity, this further increased the risk for downstream
process and formulation activities, since lower formulation pH
alone (sodium acetate pH 5.5) was not able to mitigate high
viscosity arising from self-interactions (data not shown).

Noticeable correlations were seen between different
self-association methods (e.g., AC-SINS and Rh measurements)
during the screening phase and assays used to assessmanufactur-
ability endpoints (viscosity, kD by DLS, solubility to PEG 6000)
across W104 and W104X mutants. Figuress 9a-e show correla-
tion plots for molecules formulated in PBS pH 7.4. Given the
depressed colloidal properties observed with W014 F and some
of the other W104X mutants, these mutants were also evaluated
for their solubility to PEG 6000 as an additional confirmation of
the impact of the introduced mutation on their colloidal proper-
ties. AC-SINS and kD, are compared in Figure 9a, Figure 9b
compares kD vs Rh (by DLS) and AC-SINS, Figure 9c compares
AC-SINS vs. viscosity, Figure 9d compares kD vs viscosity, and
Figure 9e compares PEG 6000 solubility with viscosity kD vs.

Figure 8. Case study Humanized mAb B: Analytical characterization and homology model.
a- Analytical characterization data for all mAb B W104 mutantsAffinity was measured by SPR (KD), Hydrodynamic radius (Rh) by DLS, kD (coefficient diffusion) by DLS,
and AC-SINS in PBS pH 7.4 and sodium acetate pH 5.5.AC-SINS Δλmax values were obtained by subtracting λmax values of the samples from λmax values for buffer
only samples (λmax (PBS) = 531 nm and λmax (Na Acetate) = 535 nm). Optimal properties (green) are defined by Rh <6 nm, kD < −15 ml/g, AC-SINS Δλmax <10 nm,
intermediate properties (gray) are Rh ~6–7 nm, kD −15 to −25 ml/g, AC-SINS Δλmax ~10–20 nm, and suboptimal properties (red) are Rh >7, kD < −25 ml/g, AC-SINS
Δλmax >20 nm.b- Homology model of mAb B (PyMOL). Aromatic residues in the light chain (green) and heavy chain (blue) are highlighted.
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viscosity, with viscosity measured at 100 mg/ml concentration.
W104X variants that had the most elevated λmax by AC-SINS
also showed the most negative kD (−52.4 ml/g for W104A and
−43.5 ml/g forW104 F) and increased Rh by DLS (up to 14.9 nm
forW104A and 11.8 nm forW104 F) (Figure 9a, b, c). These plots
revealed a reasonable relationship between AC-SINS, λmax, kD,
Rh, which also expanded further to viscosity and PEG 6000
solubility. W104X variants (W104 F, W104 V, W104A), which
had higher λmax values by AC-SINS, not only showed the most
negative kD and increased Rh, but also exhibited the highest
viscosity at 100 mg/ml in PBS pH 7.4 (elevated to 40–50 cP)
and the lowest solubility in PEG 6000 (~8% compared to 13% for
W104) having overall the most depressed colloidal properties
among the W104 panel.

A careful risk assessment was warranted for W104 F. We
performed an analysis of W104 oxidation under unstressed and
stressed conditions. The overall oxidation of W104 was moder-
ate at <1% after expression and purification, <1% after 50°C
incubation during a one-week stability study in 20 mM sodium
acetate pH 5.5 buffer (data not shown) and climbed to 18.1%
upon exposure to 1X light stress. This suggested that this liability
may be acceptable from a Chemistry, Manufacturing, and
Controls (CMC) developability perspective and could be
addressed during formulation development. Importantly, fol-
lowing chemical and light stress (data not shown), W104 main-
tained BIAcore binding affinity (KD) and capacity. When
weighed against the dramatic self-association that occurs in the

W104 F mutant in both PBS and lower formulation pH (sodium
acetate pH 5.5), which would be problematic for platform filtra-
tion, mixing, and UF/DF processes, the moderate light or che-
mical induced oxidation occurring at W104 is a lower risk.
Therefore, the uncorrected W104 molecule was selected as the
drug program candidate. In this example, HT screening assays
efficiently predicted depressed colloidal properties for a variant
that was further characterized and confirmed by manufactur-
ability assays, which, using larger amounts of material, led to the
deprioritization of the suboptimal molecule for development.

Discussion

Early-stage assays that evaluate mAb drug-like properties in
discovery at the onset of antibody sequence generation serve
as valuable tools for the selection of lead candidates. Early-
stage biophysical assays, including self-association and non-
specificity evaluation, are powerful tools that can aid in the
selection of molecules with optimal physicochemical and bio-
physical properties. This would save development costs and
accelerate timeline toward first-in-human clinical initiation,
eventually leading to the development of best-in-class drugs
(efficacy, route of administration, half-life, dosage regimen).

Implementing developability at this screening stage will
ensure that a smaller number of molecules that meet the
best combination of biological activity, biophysical properties,

Figure 9. Case study Humanized mAb B: correlating HT predictive self-association methods with CMC endpoints for W104 and selected W104X variants formulated in
PBS pH 7.4.
a- Comparison of AC-SINS and kDb- Comparison of kD, AC-SINS, and Rh by DLS at 2 mg/mlc- Comparison of AC-SINS and viscosity d- Comparison of kD and
viscosity e- Comparison of PEG 6000 solubility and viscosity
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sequence, and epitope diversity are progressed to the next
stages of development.

Our HT analytical characterization of a panel of 152
human or humanized antibodies support the idea that physi-
cochemical properties that are examined during the initial
stages of candidate selection can be predictive of key down-
stream processes in development and clinical manufacturing,
as shown with the two case studies we presented.

Several assays used in discovery were assessed for their
suitability as predictive tools for downstream parameters.
Many of the HT biophysical assays have counterparts in
downstream development that require larger amounts of
material and provide a closer read on specific properties
(e.g., AC-SINS expected to correlate with protein–protein
interaction (kD assessed by DLS) and viscosity measurements
at high concentration (with syringeability as process feature)).
Temperature of aggregation onset is predictive of real-time
stability (at 4°C and accelerated temperature) and stability
under stressed conditions (40°C). We identified correlations
showing that aggregate formation upon low pH hold (at pH
3.5) are linked with Tonset, Tm1, and Tagg, as well as with
AC-SINS, and it can provide useful information for down-
stream endpoints such as viscosity at high concentrations
(100 mg/ml concentration and above). Molecules that show
the highest Tm and Tagg also show the best colloidal proper-
ties (aggregation resistance during low pH hold, less self-
interactions as detected by AC-SINS, and less hydrophobicity
as demonstrated by retention times using UP-SEC and HIC).
Tm/Tagg assessment by nano-DSF can be predictive of pur-
ification parameters, such as loss during binding, filtration,
buffer exchange by dialysis, UF/DF, recovery, aggregation,
storage, and accelerated stability. Low pH stability is predic-
tive of viral inactivation features and allows researchers to
obtain some insights into colloidal properties of the molecule.
Machine learning efforts on a much larger dataset would help
further solidify correlations.

In their report, Jain et al.9 expressed 137 antibodies (on
human IgG1 backbone) in that reached advanced clinical
stages, including 48 approved that are approved for therapeu-
tic use, in HEK293 cells and analyzed these in 12 different
biophysical property assays: self-interaction by AC-SINS and
clone self-interaction by biolayer interferometry; binding to
poly-specificity reagent (PSR) and to baculovirus particle
(BVP); cross-interaction chromatography (CIC); ELISA with
a panel of commonly used antigens; expression titer in
HEK293 cells; Fab melting temperature (Tm); HIC; salt-
gradient affinity-capture (SGAC) self-interaction nanoparticle
spectroscopy; standup monolayer adsorption chromatography
(SMAC); and the percentage of monomeric species assessed
by UP-SEC in the context of an accelerated stability (AS)
study (up to 30 days at 40°C). The authors identified five
clusters of assays based on biophysical property values of the
antibodies: group 1, as the largest cluster, represents protein-
binding assays (PSR, CSI, AC-SINS, CIC), group 2 includes
assays that evaluate hydrophobic interactions (SGAC-SINS,
SMAC, HIC), group 3 are assays that involve ELISA plate
binding (ELISA and BVP), group 4 provides information on
long-term aggregation propensity (AS), and group 5 are
related to thermodynamic stability (HEK293 titer and Tm).

Assays that are common between our studies and Jain’s
group are Tm (Fab), AC-SINS, HIC, and titer assessment.
Both groups also describe the percentage of monomeric anti-
body species by UP-SEC, but the experiments were done
under different experimental conditions. We report the per-
centage of monomeric antibody under two conditions (after
protein A purification step and buffer exchange and after
incubation at low pH (pH 3.5) for 30 minutes), while Jain
et al. report data after 30 days at 40°C. Assessment of Tonset,
Tagg, pI by cIEF, retention times on UP-SEC column, HP-RP
purity was done only in our study. Jain et al. performed the
analysis by PSR, SCI, ELISA binding to multiantigen and
BVP, which we did not perform in our studies.

The strongest findings in our studies (Table 2) involve
unique assay and experimental conditions (e.g., pI by cIEF/
Tonset, RT by HIC/RT by UP-SEC, Tm1/Tagg, Tm1/Tonset,
percentage of monomeric species after low pH by UP-SEC
/Tonset, pI by cIEF/percentage of monomeric species after
low pH by UP-SEC, etc.). The results we present here are
novel and complementary to Jain et al.’s results since we only
evaluated one assay from their group 1 (AC-SINS) and group
2 (HIC), and none from their group 3. The one correlation we
saw that is not readily apparent in the Jain et al. study is the
correlation between Tonset, Tm1 (listed as Tm in Jain et al.)
and aggregation propensity, as measured by Tagg and percen-
tage of monomeric antibody after protein A chromatography
and low pH incubation.

When developed as therapeutics, human IgG1 molecules
have better biophysical properties (higher Tm, Tagg, better
colloidal properties) than human IgG4.68,69 Our analysis on
the panel of 152 mAbs confirmed and further expanded the
published findings across several HT assays (aggregation for-
mation upon low pH stress, AC-SINS, Tm/Tagg). Since the
mAbs that were examined on human IgG1 and IgG4 back-
bones had different variable domains for most of the mole-
cules, a pairwise comparison of mAbs with identical variable
domain sequences on IgG1 and IgG4 would be needed to
confirm the conclusions.

In Case study 1, we observe that engineering a molecule
with higher pI through humanization improved several attri-
butes, including Tm/Tagg, aggregation levels on release and
during accelerated stability, solubility, purification yield, and
lower particle formation. The differences in Tm/Tagg corre-
lated well with aggregation propensity during expression and
accelerated stability, as well as particle formation. A modest
improvement in interaction parameter kD was observed for
the high pI variants, but acceptable values in kD and low AC-
SINS for all (low and high pI) variants correlated well with
low viscosities at 100 mg/ml. VL CDR1 deamidation was also
successfully corrected. A better molecule with lower develop-
ability risk was successfully achieved through efforts that
revolved around improving aggregation propensity.

In Case study 2, attempted correction of a VH CDR3
tryptophan oxidation site created significant self-association
issues, although the correction did not significantly affect
other developability attributes, including target antigen affi-
nity and aggregation propensity. For these correction variants,
predictive self-association assays such as AC-SINS, kD and Rh
by DLS, and even PEG solubility, correctly predicted high
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viscosities up to 100 mg/ml and all attributes correlated with
each other. Developability risk was weighed between oxida-
tion and self-association, and we deemed the tryptophan
oxidation to be a much lower developability risk and more
easily mitigated during process and formulation activities.
Remarkably, W104X variant self-association was highly sig-
nificant and dramatically attenuated through the mutagenesis
of a single CDR residue. This led us to hypothesize that
significant self-association behavior is a highly specific inter-
action event. Similar to Case Study 1, a better molecule with
lower developability risk was successfully achieved by improv-
ing self-association behavior.

Criteria and quality attributes identified during the devel-
opability screening phase via in silico predictive and HT
experiment analysis are typically confirmed and additional
criteria are addressed in the manufacturing phase. Our dis-
covery stage HT screening and developability workflow utilize
materials expressed and purified from transient transfection
in CHO-EXPI cells. The final assessment and downstream
process fit analysis will utilize stable CHO manufacturing
cell lines.

Without a doubt, a tight integration of discovery screening,
in silico prediction, sequence optimization, and selection via
HT analytical methods, HT data management system, and
developability and process development activities are crucial
to ensure a streamlined and fast progression of a molecule
with good properties to the clinic. In addition, the inclusion of
this assessment in discovery provides a platform to incorpo-
rate knowledge about product into development activities.
Typically, the initial identification of a product’s quality attri-
butes and degradation pathways that are critical occurs in
discovery during the initial stages of developability
assessment.76,77 The pCQAs identified in discovery are not
intended to set specifications for development and manufac-
turing. Developability can be considered as an extension of
Quality by design guidance, providing a bridge between “pro-
duct knowledge” and “product understanding”, addressing the
influence of product characteristics in manufacturing and
clinical outcome, and helping expand the design space for
a drug candidate.77,78

Potency and differentiation of the biology are critical drivers
for a successful drug in the marketplace; therefore, these aspects
must be considered when ranking and selecting candidates for
progression to development. Inclusion of developability in the
selection criteria made in discovery is in line with downstream
development, clinical manufacturing needs, and aim to reduce
the rate of failure during development, allowing for
a streamlined and faster path from discovery to manufacturing,
commercialization, and, ultimately, the clinic. From the devel-
opability side, it should be emphasized that, while molecules are
ranked based on their overall physicochemical and biophysical
properties, some properties are considered to be high impact
attributes (attributes related to thermostability, colloidal proper-
ties, stability, pI, and frequently encountered PTMs, such as
oxidation, deamidation, and isomerization), and others are
more secondary attributes (charge distribution, hydrophobic
variants, less frequent PTMs such as glycation), which typically
are easier to mitigate in the bioprocess arena through formula-
tion process development. An assessment against absolute values

and strict cutoff for acceptability criteria is useful and often
applied, but cannot frequently be readily utilized, as the overall
data package needs to be examined in the context of the indica-
tion. For example, high viscosity may hinder high-concentration
subcutaneous (SC) liquid formulation, but a very potent mole-
cule that can be given at a low dose where intravenous (IV)
injections are possible may still have a place in the market. As
a result, biologics molecule ranking needs to be based on a fully
integrated set of parameters as described here, as well as con-
sideration of the medical indication in the clinic and route of
administration. Incorporation of these multiple key considera-
tions at an early stage of discovery research coupled with
sequence-based or in silico predictive approaches and tools will
allow the selection and rapid progression of best-in-class anti-
body therapeutics to the clinic.79-81Interestingly, the observed
correlations with single in silico descriptors proved to be weak in
general and highly sensitive to subtle changes in structure pre-
paration.Whenmultiple descriptors were combined via PLS, the
model became significantly more robust to these changes and
predictive over a wider array ofmAbs including novel structures.
Overall, a predictive r2 of greater than 0.6 using a small number
of components is an extremely promising start given the rela-
tively small size of our sample pool. However, we did not set out
to create a model that could precisely predict the HIC retention
time of a given mAb sequence. While this may be a long-term
goal, the more prescient concern would be the ability to provide
a binary classification of promising candidates vs. likely failures.
In this context, the model was able to perform exceedingly well,
correctly classifying compounds as “good” vs “bad” eluter with
about 82% accuracy. Machine learning, or other more complex
models, were considered to be premature given the size of our
dataset. Indeed, initial attempts at their use yielded poor correla-
tion and weak signals (data not shown). While we will continue
to investigate its utility as our dataset grows, we found that PLS
regression and QSPR modeling provided simple equations that
were relevant, interpretable, and portable.

Materials and methods

Expression and Purification (gene synthesis, transfection,
titer estimation, protein A purification)

Transient transfections were done in TubeSpin® bioreactors
(TPP Techno Plastic Products AG) using the ExpiCHO
Expression System (Thermo Fisher Scientific, Waltham,
MA) for the protein production in this study according to
the manufacturer’s protocol. Briefly, the cells were grown and
maintained in ExpiCHO Expression Medium (Thermo Fisher
Scientific) and seeded in 10 mls of media at 6x10^6 cells/mL
on the day of transfection. Complexes were formed with 8 ug
of DNA and 32 ul of Expifectamine in OptiPRO™ SFM and
incubated for 1 min followed by addition to the cells. The
transfected cultures were grown at 37°C, 5% CO2, 80%
humidity, and 300 rpm rotation in a Multitron incubator
(Infors HT, Basel, Switzerland) and then shifted to 32°C
24 hr post-transfection and were fed with feed and enhancer
on days 1 and 5. The cultures were harvested on day 7, the
cells were pelleted by centrifugation, and the supernatant was
passed through a 0.2 micron filter. The protein titers were
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determined using a ForteBio Octet (Molecular Devices, LLC.
San Jose, CA) with Protein A sensors and a purified mAb to
generate the standard curve.

The clarified cell culture supernatants were loaded onto
Tecan Freedom EVO 200 (Tecan Life Sciences, Männedorf,
Switzerland) for antibody purification utilizing miniature col-
umns manufactured by Repligen (Waltham, MA) and packed
with MabSelect™ SuRe™ LX (GE Healthcare Life Sciences,
Pittsburgh PA). The antibodies were eluted with 20 mM
sodium acetate at pH3.5 and immediately neutralized with
0.333 M Tris, 1 M sodium acetate, pH 8.0 and buffer
exchanged into 20 mM sodium acetate pH 5.5.

Larger batches of humanized antibodies were generated
from transiently transfected CHO-Expi cells lines and.
Antibodies were purified from culture supernatant by affinity
chromatography using a Protein A coupled resin (MabSelect™
SuRe™ (GE Healthcare Life Sciences, Pittsburgh PA)). The
mAb was then incubated at pH 3.5 for 1 hour at room
temperature by the addition of 1 M acetic acid. After
1 hour, the pH was adjusted to 7 using 1 M tris base and
the mAb solution was filtered to remove particulates. The low
conductivity mAb solution was then loaded on an AEX chro-
matographic support (Capto Q resin, GE Healthcare) equili-
brated in 25 mM tris hydrochloric acid pH 7 buffer. Finally,
the AEX flow through containing the mAb was dialyzed into
the formulation buffer consisting of 20 mM sodium acetate
pH 5.5. This purification scheme is similar to the platform
purification scheme used in downstream development areas.

Size-exclusion chromatography HPLC

To determine aggregation by UP-SEC, 5 μg of purified antibody
was injected onto a BEH200 (Waters Acquity BEH200 SEC,
1.7 μm, 4.6 × 150 mm) size exclusion column that was equili-
brated with 100 mM sodium phosphate, 200 mM sodium chlor-
ide, 0.02% sodium azide pH 7, at 0.5 mL/minute using a Waters
H-Class UPLC. Chromatograms were collected at both 215 and
280 nm wavelengths, and integration of the absorption at 280 nm
(wavelength) trace was performed using EMPOWER 2 (Waters).

Hydrophobic chromatography

To determine the hydrophobicity of a given mAb using HIC,
50 ug of sample at 0.5–1 mg/ml was mixed 1/1 (v/v) with
a 100 mM sodium phosphate, 2 M ammonium sulfate pH 7.0
buffer solution. Prepared samples were subsequently filtered
through a 0.22 um PVDF membrane prior to loading 60 ul on
a Dionex Pro Pac HIC-10 column equilibrated in 100 mM
sodium phosphate, 1 M ammonium sulfate pH 7.0 (mobile
phase A). The samples were eluted using an inverted gradient
from mobile phase A to 100 mM sodium phosphate pH 7.0
(mobile phase B). The elution was followed by recording the
A280 nm as a function of time, the data was then exported
and analyzed using the Empower software. The retention time
of each sample was compared to a reference and is character-
istic of the mAb hydrophobicity with longer elution times
correlating with higher degree of hydrophobicity.

Reverse phase chromatography

To determine purity using reverse phase high-performance
liquid chromatography, 15 μg of purified antibody was loaded
onto a POROS R2/10 2.1 × 30 mm column (Applied Biosystems)
and equilibrated with 30% acetonitrile, 0.2% trifluoroacetic acid
at 70°C and 2 mL/min. Samples were eluted with a linear gra-
dient from 30-58% acetonitrile in 0.2% trifluoroacetic acid over
5 minutes. Chromatograms were collected at both 215 and
280 nm wavelengths, and integration of the A280 nm trace was
performed using Chemstation Rev. B.04.01 (Agilent).

Tonset/Tm/Tagg measurements by nano-DSF

Nano-DSF is a method for measuring ultra-high-resolution
protein stability using intrinsic tryptophan or tyrosine fluor-
escence. All nano-DSF studies were performed using the
Nanotemper Prometheus NT.48 instrument. Samples
(~10 μL at 0.5–1 mg/mL) were loaded by capillarity into
standard grade nano-DSF capillaries, placed on the
Prometheus capillary holder and subjected to a temperature
ramping of 1°C/minute from 20°C to 94.8°C. Up to 48 sam-
ples were analyzed in parallel and assessed for stability in
3 seconds at the respective temperature.

The melting point (Tm) onset (°C) and Tm (°C) values
indicate the structural stability of the samples and were
obtained by monitoring the intrinsic tryptophan and tyrosine
fluorescence at the emission wavelengths of 330 nm and
350 nm. To generate an unfolding curve, the ratio of the
fluorescence intensities (F350 nm/F330 nm) was plotted vs.
temperature or time. The thermal stability of a sample was
described by the thermal unfolding transition midpoint Tm (°
C), at which half of the protein population is unfolded. The
Tm corresponds to the inflection point of the unfolding curve
and was determined via the derivative of the curve.

The aggregation point Tagg (°C) is representative of the
colloidal stability of the samples and was obtained by mon-
itoring the back-reflection of near ultraviolet (UV) light using
back reflection optics. The back-reflection optics use of near
UV light scattering by protein aggregates, and thus only non-
scattered light reaches the detector. The reduction of back
reflected light is therefore a direct measure for aggregation
in the sample.

Sodium dodecyl sulfate capillary electrophoresis

Five µL of each sample at 1 mg/mL were mixed in a 96-well
plate with 35 µL of loading buffer (HT Protein Express
Sample Buffer) (Perkin Elmer, Waltham, MA) containing
either 50 mM iodoacetamide or 50 mM dithiothreitol. The
plate was incubated at 70°C for 20 minutes and 75 µL of water
was added to each well. Each sample was analyzed on
a LabChip GXII (Perkin Elmer) using an HT Protein
Express Chip (Perkin Elmer). Electropherograms were col-
lected by measuring the fluorescence of the sample over
time and integrated using the LabChip GX software
V4.1.1619.0 SP1 (Perkin Elmer, Waltham, MA).
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Affinity-capture self-interaction nanoparticle
spectroscopy

The AC-SINS assay measures protein self-interaction by
capturing the mAb on the surface of a gold colloid that
displays surface resonance oscillations in frequency with
visible light. As the immobilized antibodies self-interact,
the colloids aggregate, changing the oscillation frequency
to absorb at a longer wavelength. Gold nanoparticles were
incubated overnight with an 80/20 (v/v) capture antibody/
non-capture antibody mixture. The coated gold nanoparti-
cles were then spun down and resuspended into the con-
jugation buffers (20 mM sodium acetate pH 5.5 and PBS 1x
pH 7.4) to a final volume of 50 ul. The samples were diluted
to 0.05 mg/ml into the conjugation buffers and 45 ul of each
dilution was loaded onto a 384-well plate. Five ul of pre-
viously prepared gold nanoparticles were then added to each
well of the plate including mAbs and buffer controls. The
plate was then covered with an aluminum lid, incubated at
room temperature for 2 hours, and quickly spun down at
3000 rpm prior to reading the absorbance spectra of each
well from 450 to 650 nm using a plate reader. Each sample
spectra was recorded and analyzed for red-shifting of the
maximum of absorption peak compared to buffers and mAb
controls, the red-shifting and its strength is indicative of the
self-interaction propensity of the tested mAb sample.

Assessment of aggregation and self-interaction by
dynamic light scattering

All DLS studies were performed at 25°C on the undiluted
samples in glass bottom 96-well plates using a DynaPro
Plate Reader II (Wyatt, Santa Barbara, CA). Twenty (20)
acquisitions (5 seconds each) per well were averaged and the
hydrodynamic radius (Rh), % polydispersity, and % mass was
modeled using Dynamics version 7.1.9.3 (Wyatt Technology)
to assess aggregation.

For the determination of self-interaction, the diffusion
interaction parameter (kD) was determined by DLS. High-
concentration samples were diluted with the buffers of inter-
est (20 mM sodium acetate pH 5.5 and 10 mM histidine
hydrogen chloride pH 6.5) to obtain a concentration of
20 mg/mL, filtered through 0.22 µm filters, and diluted in
filtered buffers (with desired pH and ionic strength) to obtain
lower concentration samples (2, 5, 10, 15, and 20 mg/mL),
which were then added to the microplate. The kD was deter-
mined by a linear fit of the measured (mutual) diffusion
coefficients as a function of concentration.

PEG 6000 solubility measurement

To determine the PEG 6000 solubility of a given protein, samples
were dialyzed and diluted to 2 mg/mL with the filtered buffers of
interest (20 mM sodium acetate pH 5.5 and 10 mM histidine
hydrogen chloride pH 6.5). The PEG 6000 concentration screens
(0 to 40% w/v) were generated using the Andrew robot (Alliance,
Geneva, Switzerland) by diluting a 40% w/v PEG 6000 stock
solution in buffers of interest with stock solutions of the corre-
sponding buffers. Ten (10) µLof the 2mg/mL sampleswere loaded

into a half-well UV microplate (Corning, Corning, NY) pre-
loaded with 90 µL of the previously prepared PEG 6000 concen-
tration screen solutions, mixed, and incubated 1 hour at room
temperature prior to reading the plate using an EPOCH/2
Microplate reader from BioTek (Winooski, VT) measuring the
optical densitometry at 320 nmwavelength. The optical density at
280 nm (OD280) can also be used to analyze the filtered samples.
The value reported was the PEG 6000 concentration at the mid-
point at which half of the protein population was precipitated and
was determined via the derivative of the precipitation curve.

Viscosity assessment

This method accurately measures dynamic viscosities of anti-
body and protein formulations for a range of concentrations
and viscosities (1–80 cP). Samples were evaluated for viscosity
in 3 different formulations (10 mM sodium acetate pH 5.5,
10 mm histidine-HCl pH 6.5, and 1x PBS pH 7.4) and within
a 10–200 mg/ml concentration range. The prepared samples
were then filtered using a 0.2 um PVDF membrane prior to
loading 60 ul into glass vials. The vials were quickly spun
down and placed into the VROC initium (Rheosense, San
Ramon, CA) sample vial tray. Forty-eight (48) ul of the
sample were then injected into the instrument cell where the
viscosity of the solution was measured between 1 and 80 cP at
25°C. Viscosity values were then plotted as a function of
protein concentration. Each reported viscosity value was the
average of 10 measurements.

Assessment of aggregation formation after low pH hold

In this method, the samples from small-scale purification
were quickly buffer exchanged using a 96-well Zeba Spin
desalting plate prior to lowering the pH to 3.5 using 2
M acetic acid. The plate was then covered using a Roche
light cycler foil and incubated for 30 min at room temperature
prior to adjusting the pH of the solution to 5 using 1 M TRIS
base. The samples were then spun down quickly at 3000 rpm
prior to injecting 5–10 ug on a Waters BEH200 SEC column
equilibrated in 100 mM sodium phosphate, 200 mM sodium
chloride, 0.02% sodium azide pH 7 using a Waters UPLC
system to assess the sample purity by UP-SEC.

Oxidation by Azobis(2-amidinopropane) dihydrochloride

Antibody at 1–2mg/mLwas incubated in 1mMAAPHat 40°C for
6 hours protected from light, buffer exchanged into 20 mM
sodium acetate, pH 5.5 and stored at −80°C until analysis.

Light stress

Antibody at 1–2 mg/mL was placed in a reusable quartz cuvette,
exposed to 1x light (200W-h/m2 ultraviolet and 1200 k-lux visible
light) at 25°C. and stored at −80°C until analysis.
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Assessment of isoelectric point and charge variants by
cIEF

To determine the pI by cIEF, samples were diluted to 0.2 mg/
mL in buffer containing 0.35% methyl cellulose, 3 M urea, 1%
Pharmalyte 3–10 (GE Healthcare), 0.5% Pharmalyte 5–8, 0.5%
Pharmalyte 8–10, 0.5% pI marker 5.85 (ProteinSimple, San
Jose, CA) and 0.5% pI marker 9.77. Samples were run on an
iCE3 (ProteinSimple, San Jose, CA) using an FC-coated capil-
lary focusing for 1 minute at 1500 V followed by 8 minutes at
3000 V. Data was exported into and integrated using
Empower 2 (Waters).

Analysis of antibodies by LC−MS/MS peptide mapping

For peptide mapping by mass spectrometry, 100 μg of each
sample was denatured with 30 µL of 8 M guanidine/1 M tris
hydrochloride solution (15:1), reduced with 2 µL of 1
M dithiothreitol for 30 minutes at 60°C and alkylated with
5 µL of 1 M iodoacetamide for 45 minutes in dark. Before
digestion, samples were buffer exchanged into 50 mM ammo-
nium bicarbonate using 7 kDa molecular weight cut off ZEBA
cartridges. Samples were digested with 2 µg of trypsin and
chymotrypsin for 2 hours at 37°C. Digestion was quenched by
the addition of 3 μL of 5 M hydrochloride to each sample.
Data was acquired in a Dionex/QE plus MS using a linear
gradient over 50 min from 2-36% acetonitrile in 0.1% formic
acid. Samples were analyzed using PEAKS DB (Bioinformatics
Solutions Inc.) for database searching as well as PepFinder
(Thermo Fisher Scientific) and manual verification for
the percent change assessment.

Analysis by SPR (BIAcore)

Binding kinetics of the mAbs to the target was determined by
SPR on a BIAcore T200 or BIAcore 4000 (GE Healthcare).
The running buffer, 10 mM HEPES, 150 mM NaCl, 0.05% v/v
Surfactant P20, 3 mM EDTA, pH 7.4 (HBS-EP+, GE
Healthcare) was used for immobilization and reagent dilu-
tions. All binding kinetics were measured at 25°C.

For each injection cycle, mAbs were first captured in different
flow cells with an anti-human Fc antibody (Human Antibody
Capture Kit, GE Healthcare) immobilized to the sensor chip
(Series S CM5, GE Healthcare). Reference flow cell with no
captured mAb was also used. Serial dilutions of the target pro-
tein, ranging in concentration from 0.16 nM to 80 nM, and
buffer blanks were injected in multiple cycles over the captured
mAbs and reference surfaces for a 3-minute association followed
by a 10-minute dissociation. The surfaces were regenerated with
a 30 second injection of 3 M MgCl2 after each cycle.

Double-referenced titration data was globally fit to a 1:1
Langmuir binding model to determine the association rate con-
stant, ka (M

−1 s−1), and the dissociation rate constant, kd (s−1),
using the BIAcore T200 Evaluation Software version 2.0 or
BIAcore 4000 Evaluation Software version 1.1 (GE Healthcare).
The equilibrium dissociation constant was calculated as KD

(M) = kd/ka.

Subvisible particle assessment following 10 days
incubation at 50°C by flow cytometry

A Guava EasyCyte 5HT™ flow cytometer (GFC) used in this
study was purchased from EMD Millipore Corp (Billerica,
MA). Briefly, the plate carrying the protein samples (160 µL
of 1 mg/mL protein solution) was left undisturbed at 5°C
overnight for degassing and minimizing potential interference
from micro air bubbles that might have been trapped in the
solution during the sample preparation. The data were col-
lected for 250 s to allow an analyzed sample volume of 60 μL,
unless the particle counts hit the 200,000 count limit of this
instrument before 250 s and the instrument automatically
ended the data collection and moved onto the next sample.
The number of measured particles is limited by the analyzed
sample volume (60 μl) or 200,000 counts. The number of
reported particles in particles/mL is proportional to the
volume multiplication factor and measured volume. The
instrument performance was confirmed with Easy Check Kit
(EMD Millipore Corp) before sample analysis. The sample
plate was gently hand-mixed prior to be loaded on the GFC
instrument and was assayed without using the GFC mixer in
order to avoid potentially altering protein aggregate popula-
tions and generating air bubbles.

Antibody homology model generation

Homologymodels of the Fab region for all sequences were created
using the Antibody Modeler application in MOE 2019.0102.82

A homology search was performed for each sequence in order
to identify optimal templates. Each of the 6 CDRs, as well as for
the variable framework and constant regions of both the light and
heavy chains, was scored and provided a template. These 8 con-
tributors yielded a chimeric template that possessed identity with
the candidate sequence ranging between a minimum of 78% to
a maximum of 100%, with a median of 98% and 93% for VL and
VH, respectively. For each antibody, the 5 best models produced,
regardless of template origin, were retained for use in the calcula-
tion of ensemble properties. Models were minimized with the
Amber14:EHT forcefield in MOE 2019.0102.82

Homology ensemble model property calculations

Surface property patches, consisting of both hydrophobic and
ionic patches, were identified with the protein properties appli-
cation in MOE 2019.0102.82 Hydrophobic patches were con-
sidered if they exceeded 50Å2 using a lipophilicity cutoff of 0.9
as determined by mapping atomic SLogP to the protein surface.
Average surface areas were computed for all surface property
patches obtained for the model ensemble. The top-scoring
model for each antibody was used to calculate an averaged
LowModeMD83,84 sample-based patch surface area calcula-
tions. The sample mode was used and a pH range of 6.5 to 7.5
with 50 conformations calculated over the range. The frame-
work was restrained to be within 0.25 Å of the initial model.
Ensemble averages were calculated for each surface property.
The QSARModel application in MOE 2019.010282 was used to
determine the PLS model. The model was generated using all
152 tested mAbs and validated using leave-one-out cross
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validation. Final testing of the model was preformed using
a novel independent data set consisting of 106 mAb sequences
as described by Jain et al.9

Abbreviations

Å Angstrom
AAPH 2,2ʹ-Azobis(2-amidinopropane) dihydrochloride
AC-SINS Affinity-capture self-interaction nanoparticle

spectrometry
AEX Anion exchange chromatography
Asn Asparagine
BVP baculovirus particle
CDR Complementary-Determining Region
CE-SDS Sodium dodecyl sulfate capillary electrophoresis
CHO Chinese Hamster Ovary
CIC cross-interaction chromatography
cIEF Capillary isoelectric focusing
CMC Chemistry, Manufacturing, and Controls
Cp Centipoise
CSI-BLI clone self-interaction by biolayer interferometry
DLS Dynamic light scattering
DSF Differential scanning fluorimetry
Gln Glutamine
HCP Host cell proteins
HIC Hydrophobic chromatography
HIC RT-PRED Hydrophobic chromatography predicted reten-

tion time
His Histidine
HMW High molecular weight
HP- RP High pressure Reverse phase chromatography
HT High-Throughput
IEX Ion-exchange chromatography
IgG1 human immunoglobulin of IgG1 subclass
IgG4 human immunoglobulin of IgG4 subclass
IM Intact Mass
IV Intravenous
KD Binding affinity constant
kD Diffusion interaction parameter
LC-MS Liquid chromatography- mass spectrometry
M molar
mAb Monoclonal antibody
Met Methionine
NHP Non-human primate
PBS Phosphate-buffered saline
pCQA Product Critical Quality Attribute
PEG Polyethylene glycol
Phe Phenylalanine
pI Isoelectric point
PLS Partial least squares
PTM Post translational modifications
QSAR Quantitative structure-activity relationship
QSPR Quantitative structure-property relationship
Rh Hydrodynamic radius
RT retention time
SC Subcutaneous
SGAC-SINS Salt-gradient affinity-capture self-interaction nanoparticle

spectroscopy
SMAC Standup monolayer adsorption chromatography
SPR Surface plasmon resonance
Tagg Temperature of aggregation onset
Tonset Onset of melting temperature
Tm Thermal unfolding transition midpoint
Trp Tryptophan
Tyr Tyrosine
UF/DF Ultrafiltration/Diafiltration
UP- SEC Ultra pressure size exclusion chromatography

UV Ultraviolet
VH Variable domain of Heavy Chain
VL Variable domain of Light Chain
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